Multi-Objective Optimal Design of Solar-Gas Turbine Driven Polygeneration System based on 4E Analysis

2022 ◽  
Vol 37 (3) ◽  
pp. 1
Author(s):  
Khodadoost Rostami Zadeh ◽  
Seyed Ali Agha Mirjalily ◽  
Seyed Amir Abbas Oloomi ◽  
Gholamreza Salehi ◽  
Mohammad Hasan Khoshgoftar Manesh
Author(s):  
Ryohei Yokoyama ◽  
Yuji Shinano ◽  
Yuki Wakayama ◽  
Tetsuya Wakui

To attain the highest performance of energy supply systems, it is necessary to rationally determine design specifications in consideration of operational strategies corresponding to energy demands. Mixed-integer linear programming (MILP) approaches have been applied widely to such optimal design problems. A MILP method utilizing the hierarchical relationship between design and operation variables have been proposed to solve them efficiently. However, it cannot necessarily be effective to multi-objective optimal design problems because of the existence of a large number of competing design candidates. In this paper, the hierarchical MILP method is revised from the viewpoint of computation efficiency so that it can be applied practically to multi-objective optimal design problems. At the lower level, the order of the optimal operation problems to be solved is changed based on incumbents obtained previously to increase a lower bound for the optimal value of the combined objective function and reduce the number of the optimal operation problems to be solved. At the upper level, a lower bound for the optimal value of the combined objective function is incorporated into the solution method to reduce the number of the design candidates to be generated. This revised hierarchical MILP method is applied to a multiobjective optimal design of a gas turbine cogeneration plant, and its validity and effectiveness are clarified.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2261
Author(s):  
Evgeniy Ganev ◽  
Boyan Ivanov ◽  
Natasha Vaklieva-Bancheva ◽  
Elisaveta Kirilova ◽  
Yunzile Dzhelil

This study proposes a multi-objective approach for the optimal design of a sustainable Integrated Biodiesel/Diesel Supply Chain (IBDSC) based on first- (sunflower and rapeseed) and second-generation (waste cooking oil and animal fat) feedstocks with solid waste use. It includes mixed-integer linear programming (MILP) models of the economic, environmental and social impact of IBDSC, and respective criteria defined in terms of costs. The purpose is to obtain the optimal number, sizes and locations of bio-refineries and solid waste plants; the areas and amounts of feedstocks needed for biodiesel production; and the transportation mode. The approach is applied on a real case study in which the territory of Bulgaria with its 27 districts is considered. Optimization problems are formulated for a 5-year period using either environmental or economic criteria and the remainder are defined as constraints. The obtained results show that in the case of the economic criterion, 14% of the agricultural land should be used for sunflower and 2% for rapeseed cultivation, while for the environmental case, 12% should be used for rapeseed and 3% for sunflower. In this case, the price of biodiesel is 14% higher, and the generated pollutants are 6.6% lower. The optimal transport for both cases is rail.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Zongquan Deng ◽  
Rongqiang Liu

2022 ◽  
Vol 252 ◽  
pp. 115136
Author(s):  
Nikolaos Georgousis ◽  
Panagiotis Lykas ◽  
Evangelos Bellos ◽  
Christos Tzivanidis

Sign in / Sign up

Export Citation Format

Share Document