A commercial approach to solar power distribution in India

2003 ◽  
Vol 20 (1) ◽  
pp. 115
Author(s):  
Chitta Ranjan Bhattacharjee
2020 ◽  
Vol 209 ◽  
pp. 05004
Author(s):  
Irina Ivanova ◽  
Vladislav Shakirov

The problem of power supply to remote consumers in the “Baikal-Khövsgöl” Cross-Border Recreation Area, associated with the high length and low reliability of power lines is discussed. The assessment of the modes of the power distribution grid showed that the introduction of new consumers in this territory will lead to unacceptable voltage deviations, even taking into account the installation of reactive power compensating devices. Since the area under consideration has a high solar energy potential, it is advisable to use distributed solar generation. The choice of locations and capacities of solar power plants is a multi-criteria optimization problem. Four criteria are proposed: total voltage deviation, total active power losses, reliability and capital costs for construction. An algorithm for multi-criteria optimizationis developed and implemented as a program in the MATLAB, which consists in sequential verification of the feasibility of installing additional power of solar power plants at the consumers of each of the substations under consideration. For each variant, the electric grid mode is assessed using the Power system analysis toolbox program. Solutions for the choice of locations and capacities of solar power plants are obtained, providing high scores by criteria in accordance with the given criteria importance coefficients.


2021 ◽  
Vol 239 ◽  
pp. 00006
Author(s):  
Amine Doulfikar ◽  
Ian Cabales ◽  
Akash Hossan ◽  
Jeff Bloemink ◽  
Pooya Taheri

This paper discusses the design and application of solar photovoltaics (PV) under aerospace conditions. The application of solar PV that is addressed is the Power Distribution Unit (PDU) for the Canadian Space Agency’s (CSA) stratospheric balloon (STRATOS) program. The PDU utilizes four 1 kWh Battery Unit (BUs) that have been sized with volume and weight restrictions in mind. Without the capacity to provide enough energy to support multi-day missions, they are thus supplemented by the solar power generation subsystem presented in this paper. The power generation sub-system includes a bespoke solar panel design and a centralized Maximum Power Point Tracking (MPPT) power conversion unit to maximize the power output of solar panels. The centralized unit can accommodate up to eight solar panels, each consisting of nine individual C60 SunPower solar cells. The centralized MPPT unit consists of two MPPT controllers, each controller supporting up to four solar panels. The MPPT unit is modular and can be easily integrated to the CSA’s existing intelligent Battery Management System (BMS).


2015 ◽  
Vol 785 ◽  
pp. 616-620
Author(s):  
M.B.M. Juhari ◽  
A. Samizee ◽  
E.A. Azrulhisham ◽  
S. Nizam

Solar energy is considered as one of the solution to the worldwide depletion of fossil fuel resources as well as the economic alternatives in protecting the atmosphere from the adverse consequences of global warming. Nevertheless solar power is often criticized because the output power generated is variable and virtually uncontrollable. Potential analysis on introduction of photovoltaic system at particular site however requires the knowledge of solar irradiance and photovoltaic power distributions. This paper will focus on the possibility in applying statistical moments approach in solar irradiance and photovoltaic power distribution evaluation. Applying the first to forth statistical moments, the density function approximation of the parameters from 5MW grid connected Photovoltaic system were evaluated using the Pearson system. This method is based on the relationship between the first four moments of the distribution where the probability distribution is estimated by equating their theoretical moments with the moments of empirical distributions. Application of various statistical moments has the advantage in estimating the potential of photovoltaic system in view of dynamic changes of skewness and kurtosis coefficients of solar power irradiance distributions.


Author(s):  
Ajay Kumar Gupta ◽  
Jyoti Bansal

With regard to electrical energy sector, budgetary factors, power must be utilized as soon as possible once it is generated. Since storing large amounts of electrical energy is prohibitively expensive. Consequently, as energy storage substance have become mostly accessible, evenly distributed production is becoming more workable, especially with the Smart Grid concept. Distributed ESS (Energy Storage Systems) are gaining popularity. There is a diverse category of ESS namely, battery, thermal, mechanical, hydrogen and so on. But this paper investigates about the techniques used in Battery energy systems by several researchers to stabilize energy output and usage, these systems supplement variable renewable sources such as wind, tidal, and solar power.


Author(s):  
L.H. Bolz ◽  
D.H. Reneker

The attack, on the surface of a polymer, by the atomic, molecular and ionic species that are created in a low pressure electrical discharge in a gas is interesting because: 1) significant interior morphological features may be revealed, 2) dielectric breakdown of polymeric insulation on high voltage power distribution lines involves the attack on the polymer of such species created in a corona discharge, 3) adhesive bonds formed between polymer surfaces subjected to such SDecies are much stronger than bonds between untreated surfaces, 4) the chemical modification of the surface creates a reactive surface to which a thin layer of another polymer may be bonded by glow discharge polymerization.


Sign in / Sign up

Export Citation Format

Share Document