Comparison of cost estimates of final disposal facilities for carbon dioxide and high-level radioactive waste

2014 ◽  
Vol 37 (1/2/3/4) ◽  
pp. 77 ◽  
Author(s):  
D. Streimikiene
Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2580 ◽  
Author(s):  
Guido Bracke ◽  
Wolfram Kudla ◽  
Tino Rosenzweig

The phase-out of nuclear energy in Germany will take place in 2022. A site for final disposal of high-level radioactive waste (HLRW) has not yet been chosen, but a site selection process was restarted by the Site Selection Act in 2017. This Act was based on a recommendation by a commission which also advised to follow up the development of deep borehole disposal (DBD) as a possible option for final disposal of HLRW. This paper describes briefly the status of DBD in Germany and if this option is to be pursued in Germany. Although DBD has some merits, it can only be a real option if supported by research and development. The technical equipment for larger boreholes of the required size will only be developed if there is funding and a feasibility test. Furthermore, any DBD concept must be detailed further, and some requirements of the Act must be reconsidered. Therefore, the support of DBD will likely remain at a low level if there are no political changes.


2021 ◽  
Vol 1 ◽  
pp. 99-100
Author(s):  
Ute Maurer-Rurack ◽  
Guido Bracke ◽  
Eva Hartwig-Thurat ◽  
Artur Meleshyn ◽  
Torben Weyand

Abstract. The Site Selection Act stipulates a precautionary temperature limit of 100 ∘C on the outer surface of the containers with high-level radioactive waste (HLRW) in the final disposal site. This precautionary temperature limit should be applied in preliminary safety analyses provided that the maximum physically possible temperatures in the respective host rocks have not yet been determined due to pending research. Increasing temperatures in the deep geological underground, caused by the heat generation of the HLRW, can trigger thermal, hydraulic, mechanical, chemical and biological processes (THMCB) in the respective host rocks of a final disposal site and thus endanger safety. Furthermore, high temperatures may hamper the feasibility to retrieve and recover HLRW from a final disposal site. Such processes are described in detail in databases for features, events and processes (FEP) databases. Single components or barriers of a final disposal facility may require specific design temperatures for the preservation of their features once a concept for long-term safety of a final disposal site is established; however, the interactions of all relevant processes of a concept for a final disposal site must be considered when a specific temperature limit for the outer surface of the containers is derived. This temperature limit may vary for particular safety and final disposal concepts in the host rock: salt, clay and crystalline rock. The conclusion is that temperature limits regarding the outer surface of the containers should be derived specifically for each safety and disposal concept and should be supported by a solid safety analysis. Temperature limits without reference to specific safety concepts or the particular design of the final disposal site likely narrow down the possibilities for optimisation and could adversely affect the site selection process in finding the best suitable site.


2021 ◽  
Vol 1 ◽  
pp. 217-218
Author(s):  
Saleem Chaudry ◽  
Angelika Spieth-Achtnich ◽  
Wilhelm Bollingerfehr

Abstract. The road towards final disposal of high-level radioactive waste (HAW) produced in Germany requires extensive and foresighted management. To date, HAW has been stored in dual-purpose casks inside 15 interim storage facilities. Finally, it is disposed of in a deep geological repository. A site-selection process for this repository, taking into account the whole national territory, started in 2017. The road from interim storage to final disposal is not yet planned in detail: neither temporally nor spatially nor technically. Important parameters are still unknown. The last operating licenses of the existing interim storage facilities, originally built to last for up to 40 years, will end in 2047, and a concept for prolonged interim storage does not exist. The dates for the decision on the repository site and the start of its operation are plagued by uncertainties, as well as the development of safety concepts for different potential host rocks or knowledge on the long-time behavior of disused fuel assemblies during dry interim storage. According to the German site-selection law (Deutscher Bundestag, 2017) the siting decision for the final repository is planned to be made in 2031; Thomauske and Kudla (2016) drew up timelines for the site-selection process to end between 2059 and 2096. The research project WERA – Management of high-level radioactive waste in Germany: Roads from storage towards disposal – addressed these uncertainties through the development of different design options for the four main steps of the German road to disposal and of a variety of scenarios combining these steps, covering a broad range of potential future designs of the road to disposal. These scenarios have been analyzed in detail. Need for technical and political action along the road to final disposal has been identified. Options for action were named, and their preconditions and consequences were listed. The design options and the scenarios derived form the basis of societal discourse on the disposal of high-level radioactive waste. Thus, the research project WERA contributes toward the politically and societally active integration of the different disposal steps (interim storage, receiving storage facility, waste conditioning, and final disposal).


Sign in / Sign up

Export Citation Format

Share Document