scholarly journals Final Disposal of High-Level Radioactive Waste: State of Knowledge and Development for Safety Assessment

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2580 ◽  
Author(s):  
Guido Bracke ◽  
Wolfram Kudla ◽  
Tino Rosenzweig

The phase-out of nuclear energy in Germany will take place in 2022. A site for final disposal of high-level radioactive waste (HLRW) has not yet been chosen, but a site selection process was restarted by the Site Selection Act in 2017. This Act was based on a recommendation by a commission which also advised to follow up the development of deep borehole disposal (DBD) as a possible option for final disposal of HLRW. This paper describes briefly the status of DBD in Germany and if this option is to be pursued in Germany. Although DBD has some merits, it can only be a real option if supported by research and development. The technical equipment for larger boreholes of the required size will only be developed if there is funding and a feasibility test. Furthermore, any DBD concept must be detailed further, and some requirements of the Act must be reconsidered. Therefore, the support of DBD will likely remain at a low level if there are no political changes.


Author(s):  
Pierre Van Iseghem ◽  
Jan Marivoet

This paper discusses the impact of the parameter values used for the transport of radionuclides from high-level radioactive waste to the far-field on the long-term safety of a proposed geological disposal in the Boom Clay formation in Belgium. The methodology of the Safety Assessment is explained, and the results of the Safety Assessment for vitrified high-level waste and spent fuel are presented. The radionuclides having the strongest impact on the dose-to-man for both HLW glass and spent fuel are 79Se, 129I, 126Sn, 36Cl, and 99Tc. Some of them are volatile during the vitrification process, other radionuclides are activation products, and for many of them there is no accurate information on their inventory in the waste form. The hypotheses in the selection of the main parameter values are further discussed, together with the status of the R&D on one of the main dose contributing radionuclides (79Se).


2021 ◽  
Vol 1 ◽  
pp. 99-100
Author(s):  
Ute Maurer-Rurack ◽  
Guido Bracke ◽  
Eva Hartwig-Thurat ◽  
Artur Meleshyn ◽  
Torben Weyand

Abstract. The Site Selection Act stipulates a precautionary temperature limit of 100 ∘C on the outer surface of the containers with high-level radioactive waste (HLRW) in the final disposal site. This precautionary temperature limit should be applied in preliminary safety analyses provided that the maximum physically possible temperatures in the respective host rocks have not yet been determined due to pending research. Increasing temperatures in the deep geological underground, caused by the heat generation of the HLRW, can trigger thermal, hydraulic, mechanical, chemical and biological processes (THMCB) in the respective host rocks of a final disposal site and thus endanger safety. Furthermore, high temperatures may hamper the feasibility to retrieve and recover HLRW from a final disposal site. Such processes are described in detail in databases for features, events and processes (FEP) databases. Single components or barriers of a final disposal facility may require specific design temperatures for the preservation of their features once a concept for long-term safety of a final disposal site is established; however, the interactions of all relevant processes of a concept for a final disposal site must be considered when a specific temperature limit for the outer surface of the containers is derived. This temperature limit may vary for particular safety and final disposal concepts in the host rock: salt, clay and crystalline rock. The conclusion is that temperature limits regarding the outer surface of the containers should be derived specifically for each safety and disposal concept and should be supported by a solid safety analysis. Temperature limits without reference to specific safety concepts or the particular design of the final disposal site likely narrow down the possibilities for optimisation and could adversely affect the site selection process in finding the best suitable site.


Sign in / Sign up

Export Citation Format

Share Document