Evaluation of the effects of tool geometry on tool wear and surface integrity in the micro drilling process for Inconel 718 alloy

Author(s):  
Muhammad Imran ◽  
Paul T. Mativenga ◽  
Sathish Kannan
Measurement ◽  
2021 ◽  
Vol 174 ◽  
pp. 109028
Author(s):  
Vinothkumar Sivalingam ◽  
Yanzhe Zhao ◽  
Ramkumar Thulasiram ◽  
Jie Sun ◽  
Guo kai ◽  
...  

Wear ◽  
2021 ◽  
pp. 203752
Author(s):  
A.R.F. Oliveira ◽  
L.R.R. da Silva ◽  
V. Baldin ◽  
M.P.C. Fonseca ◽  
R.B. Silva ◽  
...  

Manufacturing ◽  
2003 ◽  
Author(s):  
Anping Guo ◽  
Steve Batzer ◽  
John Roth

In this paper, the dynamic characteristics of micro-drilling process under different cutting conditions and the resulting correlation to tool wear have been studied. Two types of drills, three spindle speeds and two kinds of workpiece materials were used. In-process cutting forces and accelerations were measured. The signals were analyzed in both the time and frequency domains. Some interesting phenomena were observed in the dynamic time-history response during drilling. Progressive functions with the proper order were obtained to describe the curve of the average thrust force with the number of the holes drilled. Dynamic features which were sensitive to tool wear were found. The changing trends of these dynamic features as the drill wear progresses show a feasibility to develop an on-line drill wear monitoring system by evaluating the changes in dynamic features.


2020 ◽  
Vol 285 ◽  
pp. 116780
Author(s):  
S. Chaabani ◽  
P.J. Arrazola ◽  
Y. Ayed ◽  
A. Madariaga ◽  
A. Tidu ◽  
...  

2013 ◽  
Vol 554-557 ◽  
pp. 2093-2100 ◽  
Author(s):  
Domenico Umbrello

Machining of advancedaerospace materials have grown in the recent years although the hard-to-machinecharacteristics of alloys like titanium or nickel based alloys cause highercutting forces, rapid tool wear, and more heat generation. This paper presentsan experimental evaluation of machining ofInconel718alloy under dry conditions at varying of cutting speeds and feed rates.The influence of the cutting conditions on surface integrity was studied interms of surface roughness, affected layer, grain size variations and phasechanges/modification. Also, the machining process performance was evaluatedthrough the power consumption and tool-wear.


2020 ◽  
Author(s):  
Pedro Cabegi Barros ◽  
Gustavo Franco Barbosa ◽  
Carlos Eiji Hirata Ventura ◽  
Gustavo Roberto Santos

1999 ◽  
Vol 122 (4) ◽  
pp. 620-631 ◽  
Author(s):  
T. I. El-Wardany ◽  
H. A. Kishawy ◽  
M. A. Elbestawi

The effects of cutting conditions and tool wear on chip morphology and surface integrity during high speed machining of D2 tool steel (60–62 Hrc) are investigated experimentally and analytically in this paper. Polycrystalline Cubic Boron Nitride (PCBN) tools are used in this investigation. The chips and the subsurface of the workpiece are examined using optical and scanning electron microscopy. Microhardness measurements are performed on the surface and subsurface of the workpiece. The X-ray diffraction technique is used to measure the residual stresses induced in the machined surface. The paper is divided into two parts. Part 1 presents the results obtained from the micrographical analysis of the chips and the surfaces produced. Part 2 deals with microhardness and residual stresses of the machined surface. The micrographical analysis of the chips produced shows that different mechanisms of chip formation exist depending on the magnitude of the cutting pressure and tool wear. Saw toothed chips are produced during the machining of D2 tool steel if the cutting pressure exceeds approximately 4000 MPa. The metallographic analysis of the surface produced illustrates the damaged surface region that contains geometrical defects and changes in the subsurface metallurgical structure. The types of surface damage are dependent on the cutting conditions, tool geometry and the magnitude of the wear lands. [S1087-1357(00)00104-0]


Sign in / Sign up

Export Citation Format

Share Document