Investigation and optimisation of machining parameters for micro-countersinking of AISI 420 stainless steel

Author(s):  
Arshad Noor Siddiquee ◽  
Zahid A. Khan ◽  
Jagat Singh Tomar
Alloy Digest ◽  
2008 ◽  
Vol 57 (7) ◽  

Abstract Uginox MA3 (X30Cr13, No. 1.4028; AISI 420) is an age-hardenable martensitic stainless steel, mostly used where a sharp edge for cutting is needed. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1015. Producer or source: Arcelor Stainless Processing LLC.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Finkl 420 Premium Quality stainless steel is a modification of AISI 420 with vacuum arc degassing and vacuum arc remelting. The modification results in a refined structure yielding cleanliness, strength, and isotropic properties. This datasheet provides information on composition, physical properties, and hardness. It also includes information on heat treating. Filing Code: SS-707. Producer or source: A. Finkl & Sons Company.


2000 ◽  
Vol 312 (1-2) ◽  
pp. 307-314 ◽  
Author(s):  
S.S.M. Tavares ◽  
D. Fruchart ◽  
S. Miraglia ◽  
D. Laborie

2019 ◽  
Vol 148 ◽  
pp. 83-93 ◽  
Author(s):  
Krishnan Hariramabadran Anantha ◽  
Cem Örnek ◽  
Sebastian Ejnermark ◽  
Anders Thuvander ◽  
Anna Medvedeva ◽  
...  

2014 ◽  
Vol 49 (4) ◽  
pp. 224 ◽  
Author(s):  
Lakhdar Bouzid ◽  
Mohamed Athmane Yallese ◽  
Salim Belhadi ◽  
Tarek Mabrouki ◽  
Lakhdar Boulanouar

2015 ◽  
Vol 1101 ◽  
pp. 393-396
Author(s):  
Mohammad Ahsan Habib ◽  
Md. Anayet U. Patwari ◽  
Koushik Alam Khan ◽  
A.N.M. Amanullah Tomal

For cost reduction and quality improvement of machining products, optimum output machining parameters such as material removal rate, tool wear ratio and surface roughness is very essential. Moreover, these output parameters are strongly depends on the precision of the machine tool as well as the input machining parameters. In this paper, a hybrid model of Artificial Bee Colony (ABC), which is motivated by the intelligent behavior of honey bees with Response Surface Methodology (RSM), has been developed for optimizing the surface roughness of stainless steel during turning operation. The predicted optimal value of surface roughness of stainless steel is further confirmed by conducting supplementary experiments. Finally, the performance of this algorithm is evaluated in comparison with desirability analysis. The performance of ABC is at par with that of desirability analysis for different parametric conditions.


2017 ◽  
Vol 1 (2) ◽  
pp. 19
Author(s):  
Sotya Anggoro

<p>Corrosion occurs in almost all metals. Even corrosion-resistant metals are corroded, but their corrosion rate is different from ordinary or non-corrosion resistant metals. This study examines the corrosion rate that occurs in stainless steel that is stainless steel. Stainless steel contains high enough chromium levels that can reduce the rate of corrosion that occurs. The metal material to be studied is the AISI 420 steel, which belongs to the Martensitic Stainless Steel class. This study examined the effect of heat treatment on corrosion rate and hardness level of AISI 420 steel. The heat treatment carried out was Quenching at 1020<sup>o</sup>C with a holding time of 60minutes with an oil cooling medium. After quenching the subsequent heat treatment is tempering with temperature variations of temperature 200<sup>o</sup>C and 300<sup>o</sup>C with a resistance time of 45 minutes and air cooling media. The results of this study showed that the base material specimens had the highest corrosion rate of 0.569 mm/y. The lowest corrosion rate is in specimens with quenching process with a value of 0.267 mm/y. The highest Vickers hardness values were found in specimens with quenching process with a value of 551 kg/mm<sup>2</sup>. The lowest hardness value is in the specimen with tempering process at 300<sup>o</sup>C with 405 kg/mm<sup>2</sup>.</p>


Sign in / Sign up

Export Citation Format

Share Document