A finite element model for micro machining considering size effect of material behaviour and tool geometry

2008 ◽  
Vol 31 (2/3/4) ◽  
pp. 339
Author(s):  
Hongtao Li ◽  
Xinmin Lai ◽  
Boshen Fu ◽  
Chengfeng Li ◽  
Zhongqin Lin ◽  
...  
2007 ◽  
Vol 24-25 ◽  
pp. 71-76 ◽  
Author(s):  
Wen Jun Deng ◽  
Wei Xia ◽  
Long Sheng Lu ◽  
Yong Tang

2D finite element model with the same material for backup to minimize the burr size was developed to investigate mechanism of burr formation and burr minimization. The flowstress of the workpiece and backup material are taken as a function of strain, strain-rate and temperature. Temperature-dependent material properties are also considered. The Cockroft-Latham damage criterion has been adopted to simulate ductile fracture. The crack initiation and propagation is simulated by deleting the mesh element. The result shows putting a backup material behind the edge of the workpiece is an effective way to minimize the burr size. The effects of cutting condition, temperature and different backup material properties on the burr formation and burr size can be investigated using the developed finite element model. This model could be useful in the search for optimal tool geometry and cutting condition for burr minimization and for the modeling of a burr formation mechanism.


2000 ◽  
Vol 124 (1) ◽  
pp. 32-41 ◽  
Author(s):  
D. Arola ◽  
M. B. Sultan ◽  
M. Ramulu

A finite element model was developed to simulate chip formation in the edge trimming of unidirectional Fiber Reinforced Plastics (FRPs) with orthogonal cutting tools. Fiber orientations (θ) within the range of 0 deg⩽θ⩽90 deg were considered and the cutting tool was modeled as both a rigid and deformable body in independent simulations. The principal and thrust force history resulting from numerical simulations for orthogonal cutting were compared to those obtained from edge trimming of unidirectional Graphite/Epoxy (Gr/Ep) using polycrystalline diamond tools. It was found that principal cutting forces obtained from the finite element model with both rigid and deformable body tools compared well with experimental results. Although the cutting forces increased with increasing fiber orientation, the tool rake angle had limited influence on cutting forces for all orientations other than θ=0 deg and 90 deg. However, the tool geometry did affect the degree of subsurface damage resulting from interlaminar shear failure as well as the cutting tool stress distribution. The finite element model for chip formation provides a means for optimizing tool geometry over the total range in fiber orientations in terms of the cutting forces, degree of subsurface trimming damage, and the cutting tool stresses.


Author(s):  
N. Balihodzic ◽  
H. A. Kishawy ◽  
R. J. Rogers

A plane-strain thermo-elasto-viscoplastic finite element model has been developed and used to simulate orthogonal machining. Simulations of cutting 304L stainless steel have been carried out using sharp, chamfered, and honed ceramic tools. Employing a combined thermal and mechanical stress analysis with temperature-dependent physical properties, the finite element model is used to investigate the effect of process parameters, tool geometry and edge preparation on the machining process. Stress and strain distributions within the chip and the elastic tool are presented. In addition, trends in the cutting and thrust forces, contact stress distributions and the plastic deformation beneath the machined surface are studied.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document