Effect of high temperature on fly ash-based alkali activated concrete compared to Portland cement concrete

Author(s):  
Thakkar Sonal ◽  
Dave Urmil ◽  
Patel Jay
2011 ◽  
Vol 243-249 ◽  
pp. 5067-5070 ◽  
Author(s):  
Fu Ping Jia ◽  
Yong Cheng ◽  
Yi Bing Sun ◽  
Yin Yu Wang ◽  
Hao Sun

This paper presents the results of the splitting tensile strength of high fly ash content concrete (HFCC) after high temperature and analysis the degraded rules of the residual splitting strength subjected to high temperature and the replacements of cement by fly ash. The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and were tested after exposure to high temperature 250, 450, 550 and 650°C and room temperature respectively, compared with ordinary Portland cement concrete. The results showed that the splitting tensile strength sensitively decreased with the high temperature increased. Furthermore, the presence of fly ash was effective for improvement of the relative strength. The relative residual splitting strength of fly ash concrete was higher than those of ordinary Portland cement concrete except 30% fly ash replacement. Based on the experiments results, the alternating simulation formula to determine the relationship among relative residual strength, high temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after high temperature.


Author(s):  
Robert James Thomas ◽  
Sulapha Peethamparan

Alkali-activated concrete is a rapidly emerging sustainable alternative to portland cement concrete. The compressive strength behavior of alkali-activated concrete has been reported by various studies to a limited extent, but these discussions have been based on minimal evidence. Furthermore, although it is known that specimen size has a distinct effect on the apparent compressive strength of concrete, this effect has yet to be modeled for alkali-activated concrete. This paper presents the results of a comprehensive study of the effects of curing condition (i.e., moist-cured at ambient temperature for 28 days or heat-cured at 50çC for 48 h) and specimen size on the compressive strength of sodium silicate–activated fly ash and slag cement concrete. The heat-cured strength of alkali-activated slag cement concrete was linearly related to the moist-cured strength; the former was about 5% greater than the latter. Heat curing also improved the strength of alkali-activated fly ash concrete, although the effect was greatly magnified for lower-strength mixtures and was much less significant at higher strengths. Existing size effect laws employed for portland cement concrete proved reasonably accurate in describing the effect of specimen size on the apparent strength of alkali-activated slag cement concrete. However, these existing models greatly underestimated the size effect in alkali-activated fly ash concrete; the authors suggest that this finding was the result of significant microcracking in the alkali-activated fly ash concrete.


Sign in / Sign up

Export Citation Format

Share Document