Mapping of background radiation for soil samples in Kufa Districts, Iraq

Author(s):  
Lubna A. Alasadi ◽  
Ali Abid Abojassim
2021 ◽  
Vol 4 (4) ◽  
pp. 295-301
Author(s):  
Abubakar Sadiq Aliyu ◽  
Aminu Ismaila ◽  
A. M. Na'Inna ◽  
Ahmed Mohammed

Radon and its short-lived progenies contributed significantly to natural background radiation. Long-term exposure to such radiation increases the probability of lung cancer to persons. To assess the radiological hazards associated with the inhalation of radon gas from ore dust in Mazat and Kafi-Habu mining sites of Plateau, Nigeria, 12 soil samples from an abandoned tailing dump ground were collected and analysed for radon using RAD-7 electronic detector. The dose rate of each sampling point was directly measured using RADOS RDS -120 portable survey meter. The results gave a mean radon concentration ranging from 771.51 ± 21.9 Bq/m3 to 5666.13 ± 28.8 Bq/m3 with 3451.13 ± 42.9 Bq/m3as the average value for all measurements. The average concentration of measurements from Mazat and Kafi-Habu is 3671.6 ± 41.2 Bq/m3 and 3010.16 ± 46.5 Bq/m3 respectively. The average values obtained from the analysis are significantly higher than the upper limit of 300 Bq/m3 set by the International Commission on Radiological Protection (ICRP) suggesting quick remediation on the host communities. The geometrical mean value of Dose Rate (DR) and Annual Effective Dose Equivalent (AEDE) were 870 nGy/hr and 1.04 mSv/yr respectively. Again, these values are above the global average limits of 59 nGy/hr and 1 mSv/yr. The result indicates that miners working in those sites and dwellers of the study areas are at higher risk of getting exposed to radon and need to employ protective measures. This work is useful in monitoring and control of radon level for the on-site workers and the 


2018 ◽  
Vol 7 (4.36) ◽  
pp. 678
Author(s):  
Shahad Fadel Kadim ◽  
Heiyam Najy Hady

In this study fifty (50) of soil samples of AL-Nada district-Najaf Governorate –Iraq have been collected randomly and studied using  solid state nuclear track detectors (CR-39) to determined 226Ra through counting the number of radon tracks by using CR-39 plastic nuclear track detector ,a long- term measurement technique has been considered using special tube of mean (2.5cm) diameter .The detector was placed at (5cm) height and irradiated for 90 days. The chemical etching performed by using (NaOH) solution of 6.25 normality at etching temperature (70C°)for etching period of (7 hrs  ).Concentration of radon 222Rn has ranged from (171.237±0.0062) Bq/m3 to (31.982±0.0027) Bq/m3with  average value  (99.222±0.2476) Bq/m3 while the specific activityof radon has been ranged from (0.471±1.794) Bq/kg to (0.090±7.682) Bq/kg with average value (0.277 1.320)Bq/kgThe results were found to be comparable or lower than similar global reporting data. Accordingly, this area of soil can be considered to have normal levels of natural background radiation.                           


Author(s):  
P.M. Gyuk ◽  
J.O. Anaegbu ◽  
H.O. Aboh ◽  
R. Daniel ◽  
A. Aruwa ◽  
...  

The background radiation of the areas was collected at random for each point using a rados survey meter. The detectors (two rados survey meter were used) were placed 1 meter above the ground with the operator positioned a few meters away. Three (3) readings were taking from each detector in other to reduce error or reach accuracy in obtaining the background readings from each randomly selected point where soil samples were later collected. In the current study, the concentration levels of naturally occurring radioactive materials (NORMs) of 40K, 232Th, and 238U in the surface soil samples of selected areas in kigo road new extension Kaduna north, Kaduna in Nigeria were studied. The collected soil samples were analyzed by means of gamma-ray spectrometry. The mean activity concentrations of the natural occurring radionuclides of  226Ra, 232Th and 40K in the soil samples were estimated to be 62, 78.35, 227.17 Bq/kg respectively for kigo road new extension respectively. Radium equivalent activity, absorbed dose rate, annual effective dose equivalent were also calculated for assessment of radiological risk. External hazard value (Hex) is between 0.3163 and 0.9557 and Internal hazard value is between 0.4462 and 1.1618. The worldwide average activity concentrations of 226Ra, 232Th and 40K in soil samples from various studies around the world have values of 37, 30 and 400 Bq/kg respectively [UNSCEAR, 2000]. The values compared well with published data from UNSCEAR shows Ra-226, Th-232 from the location are well above the standards while K-40 below the risk value.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Eka Djatnika Nugraha ◽  
June Mellawati ◽  
Wahyudi ◽  
Chutima Kranrod ◽  
Makhsun ◽  
...  

Mamuju, Indonesia, is an area with high natural background radiation. This study assesses heavy metal content in soil samples from this area to determine the level of public and environmental hazard it presents. This study analyzes natural radionuclide elements using high purity germanium (HPGe) gamma spectrometry and performs heavy metals analysis using a flame atomic absorption spectrometry (FAAS). Moreover, pollution indices and descriptive analyses were used to assess heavy metal contamination in the environment and the correlation between heavy metals and radionuclides. The results demonstrate that soil samples in several areas of Mamuju contain a high concentration of the natural radionuclides 226Ra and 232Th, and that heavy metal concentrations in the soil decrease in the sequence Zn > Pb > Cr > Cu > Ni > Cd. This study revealed that soil samples from Mamuju are moderately contaminated. There was a strong positive relationship between 226Ra, 232Th, ambient dose equivalent rate, and Pb. Ecological risk index (RI) and cumulative pollution index (IPI) values in Mamuju are 2.05 and 125, respectively, which are possible hazards to human health as a result. Pb concentration in the Mamuju soil samples ranged from 109 to 744 mg kg−1, exceeding the worldwide average of 27 mg kg−1.


2018 ◽  
Vol 31 (2) ◽  
pp. 60
Author(s):  
Sahar Ahmed Amin ◽  
Mukdad Abd Al-Wahaab Al-Khateeb ◽  
Talib Abd Al Shammari

Measurements of radon gas concentrations were carried out for 12 soil samples at 3 sampling depths (surface, 5 cm and 10 cm) collected from (4) locations in south Baghdad suburbs (Bu'aitha) using solid state nuclear track detector CR-39 and sealed can technique. Radon concentrations for surface samples were ranged from 402.2 to 1538.4 Bq.m-3 with an average 994.4 Bq.m-3. Whereas, radon concentration was ranged from 813.1to 2050.4 Bq.m-3 and from 1309.8 to 4626. 1Bq.m-3 with an average values of 1359.8 Bq.m-3 and 2338.3 Bq.m-3 for 5 cm and 10 cm depths respectively. Maximum radon level was found at the location near to the river (site S4) while the minimum radon level was found at residential area (site S2). Radium contents were ranged from 0.42 to 1.62 Bq.kg-1, from 0.85 to 2.15 Bq.kg-1 and from 1.38 to 4.86 Bq.kg-1 with average values of 1.04, 1.43 and 2.46 Bq.kg-1 for surface, 5 cm and 10 cm depths respectively. Radon exhalation rates as a function of area and mass were also obtained. Surface exhalation rate ranged from 0.05 to 0.18 Bq.m-2.h-1, from 0.09 to 0.24 Bq.m-2.h-1 and from 0.15 to 0.53 Bq.m-2.h-1 with average values 0.11, 0.16 and 0.27 Bq.m-2.h-1 for surface, 5 cm and 10 cm depths respectively. Mass exhalation rate ranged from 0.02 to 0.06 Bq.kg-1.h, from 0.03 to 0.08 Bq.kg-1.h and from 0.05 to 0.18 Bq.kg-1.h with average values 0.04, 0.05 and 0.09 Bq.kg-1.h for surface, 5 cm and 10 cm depths respectively. The results obtained from this study indicate that the region background radiation levels are within the natural limits.  


2005 ◽  
Vol 1276 ◽  
pp. 331-332 ◽  
Author(s):  
R. Amutha ◽  
G.M. Brahmanandhan ◽  
J. Malathi ◽  
D. Khanna ◽  
S. Selvasekarapandian ◽  
...  

2016 ◽  
Vol 31 (2) ◽  
pp. 121-127
Author(s):  
Senada Avdic ◽  
Izet Gazdic ◽  
Mersad Music ◽  
Beco Pehlivanovic

This study is focused on the radiological investigation of terrestrial gamma radiation in the test field with soil samples from different minefields in the Federation of Bosnia and Herzegovina. Measurements of ambient dose equivalent rate, commonly referred to as ?air dose rate?, in the test field located in the Tuzla Canton, were performed by RADIAGEMTM 2000 portable survey meter, based on energy-compensated Geiger-Muller counter. Its performances were tested in the laboratory conditions with gamma point sources. Since all the samples in the test field were exposed to the same cosmic radiation, there was a possibility to assess a relative contribution of terrestrial gamma radiation due to soil samples of different composition. One set of measurements in the test field was performed with RADIAGEMTM 2000, at a height of about one meter above the ground and basic statistical parameters indicated that there was no significant difference of terrestrial gamma radiation from different soil samples. The other set of measurements was carried out with the same device placed on the ground in the test field. Processing of experimental data on terrestrial gamma radiation has shown that it was possible to make a difference between relative contributions of terrestrial gamma radiation from individual soil samples. The results of investigation could be useful for multiple purposes of public interest.


2019 ◽  
Vol 7 (2) ◽  
pp. 57-60
Author(s):  
Amir Mehdizadeh ◽  
Sedigheh Sina ◽  
Reza Faghihi ◽  
Mohammad Hosein Sadeghi

Background: Radium-226 is a radioactive element, with a very long half-life of 1600 years, producing radon gas. According to the United States Environmental Protection Agency, radon gas is the second most important factor causing lung cancer. Objectives: The purpose of this study was to separate 226Ra from the soil of high background radiation area by a radiochemical method for using in radon calibration chamber. Methods: 226Ra can be used in standard calibration chambers for calibration of radon detection systems. For this purpose, radiochemical method was used to extract radium from the soil with a high concentration of 226Ra. Four soil samples used in this study were selected from high background radiation areas of Ramsar, north of Iran. Equal amounts of samples were gathered from each region and ground. The specific activity of radium-226 was measured with HPGe detector. The highest specific activity of radium-226 (44.8 Bq/g) belonged to Talesh-Mahaleh. After radiochemical separation of 226Ra, the specific activity of extracted radium crystals was measured with the HPGe detector. Results: According to the results, the specific activity of 226Ra was found to be 94.97 Bq/g. Therefore, the specific activity of 226Ra was 2.12 times greater in the extracted crystals than in the original soil samples. Conclusion: The results indicate that using the radiochemical method proposed in this study, 226Ra can be extracted with an efficiency of 42%


Sign in / Sign up

Export Citation Format

Share Document