MEASUREMENT OF RADON CONCENTRATION IN SOIL SAMPLES OF MAZAT AND KAFI-HABU MINING SITES, PLATEAU, NIGERIA

2021 ◽  
Vol 4 (4) ◽  
pp. 295-301
Author(s):  
Abubakar Sadiq Aliyu ◽  
Aminu Ismaila ◽  
A. M. Na'Inna ◽  
Ahmed Mohammed

Radon and its short-lived progenies contributed significantly to natural background radiation. Long-term exposure to such radiation increases the probability of lung cancer to persons. To assess the radiological hazards associated with the inhalation of radon gas from ore dust in Mazat and Kafi-Habu mining sites of Plateau, Nigeria, 12 soil samples from an abandoned tailing dump ground were collected and analysed for radon using RAD-7 electronic detector. The dose rate of each sampling point was directly measured using RADOS RDS -120 portable survey meter. The results gave a mean radon concentration ranging from 771.51 ± 21.9 Bq/m3 to 5666.13 ± 28.8 Bq/m3 with 3451.13 ± 42.9 Bq/m3as the average value for all measurements. The average concentration of measurements from Mazat and Kafi-Habu is 3671.6 ± 41.2 Bq/m3 and 3010.16 ± 46.5 Bq/m3 respectively. The average values obtained from the analysis are significantly higher than the upper limit of 300 Bq/m3 set by the International Commission on Radiological Protection (ICRP) suggesting quick remediation on the host communities. The geometrical mean value of Dose Rate (DR) and Annual Effective Dose Equivalent (AEDE) were 870 nGy/hr and 1.04 mSv/yr respectively. Again, these values are above the global average limits of 59 nGy/hr and 1 mSv/yr. The result indicates that miners working in those sites and dwellers of the study areas are at higher risk of getting exposed to radon and need to employ protective measures. This work is useful in monitoring and control of radon level for the on-site workers and the 

2019 ◽  
Vol 107 (6) ◽  
pp. 489-502
Author(s):  
Abd-Elmoniem A. Elzain ◽  
Hajo Idriss ◽  
Yousif Sh. Mohammed ◽  
Khidir Shaib Mohamed ◽  
Mohamed Abd Elwahab Mohamed Ali ◽  
...  

Abstract In this research, the results of radon concentration, surface and mass exhalation rates, radium concentration, effective dose rate and the alpha index have been investigated in a number of 198 soil samples that have been collected from various residential locations of Halfa Aljadida area, Sudan. The can technique, containing CR-39 have been used. From our results, the average value of soil gas radon concentration was found to be 1.96±0.22 kBq·m−3. The average values of surface and mass exhalation rates were 1.73±0.19 Bq·m−2·h−1 and 34.79±3.87 mBq·kg−1·h−1, respectively. The radium concentration average value was 8.06±0.90 Bq·kg−1. While the average value of the effective dose rate was recorded to be 54.69±6.11 mSv·y−1. The average value of alpha index of studied samples was (4.03±0.45)×10−2. From the study, a good positive and linear correlation between radium concentration, surface and mass exhalation rates of soil samples were present. In addition to that, a positive and linear correlation between radium and radon concentrations was found. Finally, a comparison between the results and other findings was conducted and the results imply the fact that the area under consideration is safe as if the health hazard are mentioned.


Author(s):  
S. P. Gautam ◽  
A. Silwal ◽  
S. Acharya ◽  
B. Aryal

Measurement of outdoor natural background radiation doses at different locations of Pokhara city, Nepal was carried out using GCA-07W, Nuclear Regulatory Commission (NRC) certified Geiger Muller (GM) detector. From the measurements, the least value of background radiation dose rate was found to be 0.26 ± 0.08 μSv/hr for Mahendra Cave area, and the highest value of dose rate was found to be 0.65 ± 0.12 μSv/hr for Prithvi Narayan Campus. The average annual effective dose rate of Pokhara city was found to be 0.56 ± 0.12 mSv/yr ranging from 0.31 ± 0.09 mSv/yr to 0.80 ± 0.14 mSv/yr. The radiation levels in Pokhara, the most populated city of the western development region of Nepal, were found to be within the secure limit for areas of the normal background recommended by the International Commission on Radiological Protection (ICRP) (1 mSv/yr). Further, the current result was compared with the previous study of annual effective dose rate measured in Kathmandu city. Comparable value of the average annual effective dose rate in Pokhara and Kathmandu was obtained.


BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 187-195
Author(s):  
Parkash Pantha ◽  
Tanka Prasad Bhusal ◽  
Budha Ram Shah ◽  
Rajendra Prasad Koirala

The study of natural background radiation dose at thirty two locations of Kathmandu valley has been done successfully using the instrument Radalert 100. The average dose rates and annual effective dose were measured. From the measurements, the least value of average dose rate was found to be (22.3±3.9)×10-3 mR/hr for Sundhara and the greatest value of average dose rate was  found to be (37.7±7)×10-3 mR/hr for Budhanilkantha 3.  As per the annual effective dose, the least value was 0.391 mSv/yr for Sundhara and the greatest value was 0.661 mSv/yr for Budhanilkantha 3. The average annual effective dose of Kathmandu valley was 0.475 mSv/yr ranging from 0.391 mSv/yr to 0.661 mSv/yr. The values thus obtained were compared to the worldwide average value of annual effective dose, 0.48 mSv/yr. Also, the obtained values were compared to the legal dose limit (annual effective dose), 1 mSv/yr set by International Commission on Radiological Protection (ICRP) for non-radiation workers and members of public. Among these thirty two locations, eight locations were chosen such that they had larger range of the observed dose rates. Those eight locations were re-observed. Further, Chi-square test was carried out to test whether the observed dose rates were following normal distribution or not. From the calculation, it was observed that the observed dose rates were following the normal distribution.BIBECHANA 16 (2019) 187-195


2019 ◽  
Vol 188 (1) ◽  
pp. 98-108
Author(s):  
F O Wanjala ◽  
N O Hashim ◽  
D Otwoma ◽  
C Nyambura ◽  
J Kebwaro ◽  
...  

Abstract The activity concentration of radionuclides 238U, 232Th and 40K in soil and the absorbed dose rate (ADRA) at 1 m above the ground in Ortum was determined. The activity concentration in soils ranged from 33 to 85, 20 to 67 and 148–1019 Bq kg–1, respectively with an average of 40 ± 1.43, 56 ± 1.46 and 425 ± 19.24 Bq kg–1, respectively. The activity concentration of 232Th and 238U was found to reduce with increasing depth while that of 40K increased with increasing depth. The average activity concentration in soil was higher than the world average values. The average ADRA in air at 1 m above the ground was found to be 112 ± 29.6 nGy h–1. The soil and rocks in Ortum are recommended for use because the activity concentration of the terrestrial radionuclides is lower than the recommended threshold values.


2011 ◽  
Vol 77 (11) ◽  
pp. 3663-3668 ◽  
Author(s):  
Valeria Guidi ◽  
Nicola Patocchi ◽  
Peter Lüthy ◽  
Mauro Tonolla

ABSTRACTRecurrent treatments withBacillus thuringiensissubsp.israelensisare required to control the floodwater mosquitoAedes vexansthat breeds in large numbers in the wetlands of the Bolle di Magadino Reserve in Canton Ticino, Switzerland. Interventions have been carried out since 1988. In the present study, the spatial distribution of restingB. thuringiensissubsp.israelensisspores in the soil was measured. TheB. thuringiensissubsp.israelensisconcentration was determined in soil samples collected along six transects covering different elevations within the periodically flooded zones. A total of 258 samples were processed and analyzed by quantitative PCR that targeted an identical fragment of 159 bp for theB. thuringiensissubsp.israelensis cry4Aaandcry4Bagenes.B. thuringiensissubsp.israelensisspores were found to persist in soils of the wetland reserve at concentrations of up to 6.8 log per gram of soil. Continuous accumulation due to regular treatments could be excluded, as the decrease in spores amounted to 95.8% (95% confidence interval, 93.9 to 97.7%). The distribution of spores was correlated to the number ofB. thuringiensissubsp.israelensistreatments, the elevation of the sampling point, and the duration of the flooding periods. The number ofB. thuringiensissubsp.israelensistreatments was the major factor influencing the distribution of spores in the different topographic zones (P< 0.0001). These findings indicated thatB. thuringiensissubsp.israelensisspores are rather immobile after their introduction into the environment.


2015 ◽  
Vol 8 ◽  
pp. ASWR.S22465 ◽  
Author(s):  
Diane Saint-Laurent ◽  
Francis Baril ◽  
Ilias Bazier ◽  
Vernhar Gervais-Beaulac ◽  
Camille Chapados

This research combines a hydrological and pedological approach to better understand the spatial distribution of contaminated soils along the Massawippi River (southern Québec, Canada). This river crosses through former mines, which were some of the largest copper mining areas in North America from 1865 to 1939. To determine the spatial distribution and concentration of the metal elements, soil samples were taken in each flood recurrence zone appearing on official flood zone maps. The maximum values obtained for Cu and Pb are 380 and 200 mg kg−1, respectively, for the soils in the frequent flood zones (FFzs), while the values for soils in the moderate flood zones (MFzs) range from 700 to 540 (Cu) and 580 to 460 mg kg−1 (Pb). Contamination extends through several kilometers of the former mining sites (Eustis and Capleton), and concentration of metals in alluvial soils is slightly higher near the mine sites.


2021 ◽  
Author(s):  
Ezekiel Oghenenyerhovwo Agbalagba ◽  
Mohammed S. Chaanda ◽  
Stephen Uloho U. Egarievwe

Abstract This study examined the radioactivity levels of soil samples within selected solid mining sites in Nigeria using high purity germanium (HpGe) detector. Sixty soil samples in all were collected from the ten solid mineral mining sites investigated and six samples were collected as control samples from non-mining environment for analyses. The results of the activity concentration values obtained for 40K, 226Ra and 232Th are 100.22 Bq kg-1, 33.15 Bq kg-1 and 77.31 Bq kg-1 respectively. The 226Ra and 40K activities were found to be within the United Nation Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) acceptable permissible limit, but the 232Th mean value was above the permissible limit of 30 Bq kg-1 for the public. In comparison, 40K, 226Ra and 232Th soil samples mean activity concentrations were higher than the control soil samples values by 48.6%, 43.7% and 62.3% respectively. The results of estimated radiation hazard indices indicate average values of 150.72 Bq kg-1, 68.40T, 83.65µSvy-1 and 454.70µSvy-1 for the Radium Equivalent (h), iDose Equivalent (AEDE) and Annual Gonadal Equivalent Dose (AGED) respectively. The mean values for External Hazard Indices (Hex, Hin), Representative Gamma index (s) and Excess Life Cancer Risk (ELCR) were 0.41, 0.50, 1.06 and 0.29 x10-3 respectively. The statistical analysis shows positive skewness.


2017 ◽  
Author(s):  
Yahya Jani ◽  
Charlotte Marchand ◽  
William Hogland

Old landfill sites contain different hazardous materials like heavy metals which have the ability to affects the entire environment. These places are sometimes covered by plants to increase the stability of the soil and to reduce the effects of erosion. 15 soil samples (3 samples from each place) and 5-7 timothy-grass (Phleum pretense) plants from 5 different places were taken from an old landfill place in an active landfill site in Högbytorp /Sweden owned by Ragn-sells Group Company. XRF scanning was used to analyze the metal content of soil samples and of plants. High concentrations of metals were detected in the soil samples like Fe with an average of about 25000 ppm, Mn about 250 ppm and 2800 ppm of Ti. The plants results showed an average concentration of Fe in the shoots about 730 ppm, Mn about 60 ppm and Ti about 1760 ppm. On the other hand, the roots results showed an average concentration of about 10 000 ppm of Fe, about 160 ppm of Mn and 2200 ppm of Ti. These results gave the indication that the Timothy-grass has the ability to extract metals from contaminated soils and can help to cleanup these soils.


2021 ◽  
Vol 2 (1) ◽  
pp. 84-95
Author(s):  
David Okechukwu Okeke ◽  
◽  
Jonathan Chinenye Ifemeje ◽  

The level of heavy metals (Fe, Cu, As, Pb, Cd, Mg, Ca, Hg, Ni, Cr, Zn, Ag, Co, Mo, Se and Al) in soils and food crops (okra, cassava and rice) cultivated within selected mining sites in Ebonyi State, Nigeria were determined using FS240AA Atomic Absorption Spectrophotometer (AAS) according to the method of American Public Health Association (APHA). Soil samples were collected from Enyigba mining site, Ikwo mining site, AmeriAmekamining site, Izza mining site, MkpumeAkwatakwa mining site and MpumeAkwaokuku mining site while the food crop samples (okra, cassava and rice) were collected from the farmlands within the mining sites. Control samples were collected 500m away from the mining destinations were there was no evidence of mining activities on the soils. A total of sixty sub-samples and six control soil samples were collected for this study. Generally, the values of all the heavy metals analyzed for soil and food crop samples were higher than the values recommended by the World Health Organization (WHO), and those from the control site suggesting possible mobility of the metals from mining sites to farmlands through leaching and runoffs. The findings in this study also revealed that the food crops contain heavy metals exceeding the maximum permissible concentration, and could be detrimental to human health when they are consumed.


Sign in / Sign up

Export Citation Format

Share Document