Investigating reservoir stresses and strain effects during production from coal bed methane gas reservoir on reservoir properties and gas production – a numerical study

2020 ◽  
Vol 25 (4) ◽  
pp. 476
Author(s):  
Subhashini Nainar ◽  
G. Suresh Kumar
2017 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Leksono Mucharam ◽  
Silvya Rahmawati ◽  
Rafael Purba

Coal Bed Methane (CBM) is an unconventional resource that shows great promise, particularly in Indonesia, whose CBM reservoir is relatively thick. Gas reserves of CBM are estimated at 450 TSCF in Indonesia, which makes it, the 6th largest CBM-containing country in the world. However, regulatory and technical limitations slow the progression of the exploitation of this resource. One of the fundamental technical problems is related to the length of gas production due to the duration of the dewatering time. Many studies have been developed related to the production of CBM, and this paper discusses several characteristics, patterns and techniques regarding the production of methane gas from coal through the use of a sacrifice well. Several scenarios are analysed with the use of a simulator. The results show that the production of a thick CBM reservoir, with some sensitivity patterns of production through the use of a sacrifice well, have an influence on the production of gas and water for the exploitation of CBM resources. In other words, the use of new techniques that are discussed in this paper have an impact on reducing the dewatering time and are effectively implemented in Indonesia, which has thick CBM formations.


SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 562-581 ◽  
Author(s):  
HanYi Wang

Summary One of the most-significant practical problems with the optimization of shale-gas-stimulation design is estimating post-fracture production rate, production decline, and ultimate recovery. Without a realistic prediction of the production-decline trend resulting from a given completion and given reservoir properties, it is impossible to evaluate the economic viability of producing natural gas from shale plays. Traditionally, decline-curve analysis (DCA) is commonly used to predict gas production and its decline trend to determine the estimated ultimate recovery (EUR), but its analysis cannot be used to analyze which factors influence the production-decline trend because of a lack of the underlying support of physics, which makes it difficult to guide completion designs or optimize field development. This study presents a unified shale-gas-reservoir model, which incorporates real-gas transport, nanoflow mechanisms, and geomechanics into a fractured-shale system. This model is used to predict shale-gas production under different reservoir scenarios and investigate which factors control its decline trend. The results and analysis presented in the article provide us with a better understanding of gas production and decline mechanisms in a shale-gas well with certain conditions of the reservoir characteristics. More-in-depth knowledge regarding the effects of factors controlling the behavior of the gas production can help us develop more-reliable models to forecast shale-gas-decline trend and ultimate recovery. This article also reveals that some commonly held beliefs may sound reasonable to infer the production-decline trend, but may not be true in a coupled reservoir system in reality.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2578-2581
Author(s):  
Zhao Hui Xia ◽  
Ming Zhang ◽  
Bin Ren ◽  
Liang Chao Qu ◽  
Ze Hong Cui ◽  
...  

Coal bed methane (CBM) is a kind of natural gas that generated from coal and disseminated organic matters during the stage of diagenesis and coalification, which mainly composed of methane and hosted in coal seam by free, adsorbed, and dissolved forms. Genetic, reservoir type and occurrence condition in CBM are different from traditional reservoir. And the high-produced development wells in CBM aiming to drill more coal seams with high quality therefore needs to be analyzed in the methods that are different from traditional reservoir. 3 important factors including the study on correlation and elevation depth of coal seam roof and floor in section and areal by using well-seismic ties, outcrop boundary based on coal mine data and distributions of CBM reservoir properties in 3D model are needed for high-produced development well analyze in CBM. Application in Australia CBM project shows this methodology is very successful for the development well design with high production.


2021 ◽  
Author(s):  
Aleksei Anatolyevich Gorlanov ◽  
Dmitrii Yurevich Vorontsov ◽  
Aleksei Sergeevich Schetinin ◽  
Aleksandr Ivanovich Aksenov ◽  
Diana Gennadyevna Ovchinnikova

Abstract In the process of developing massive gas reservoirs, gas-water contact (GWC) rise is inevitable, which leads to water-breakthrough in wells and declining daily gas production. Drilling horizontal sidetracks and new horizontal wells helps to maintain target production levels. The direction of drilling a horizontal well section largely determines its efficiency. In complex geological conditions, a detailed analysis of seismic data in the drilling area helps to reduce drilling risks and achieve planned starting parameters. The integration of seismic data in geological models is often limited by poor correlation between reservoir properties from wells and seismic attributes. Flow simulation models use seismic data based on the assumptions made by the geological engineers. The study uses a cyclic approach to geological modeling: realizations include in-depth analysis of seismic data and well performance profiles. Modern software modules were used to automatically check the compliance of the geological realization with the development history, as well as to assess the uncertainties. This made it possible to obtain good correlation between well water cut and seismic attributes and to develop a method for determining the presence of shale barriers and "merging windows" of a massive gas reservoir with water-saturated volumes.


2012 ◽  
Vol 229-231 ◽  
pp. 2470-2473 ◽  
Author(s):  
Bing Liu ◽  
Yao Guang Qi ◽  
Chao Wang ◽  
Chun Cheng Xu ◽  
Fen Na Zhang ◽  
...  

Coal particles cleanout which is regarded as the key technology in the operation of coal bed methane (CBM) wells, play an important part in making steady production. In oil wells, Sand cleanout is operated by circulating a liquid or a multiphase fluid into the wellbore to bring sand particles to the surface. Although the sand cleanout operations have been applied successfully in most wells with high efficiency and negligible leakage, it would leak working fluid into coal bed formation, destroy the structure of coal bed and jam the formed channel of gas production. In this paper, a new continuous vacuum cleanout technology has been developed to effectively remove coal particles in CBM wells by employing a jet pump. The Concentric Tubing String (CTS) which is assembled by 3.5 inch tubing and 1.5 inch tubing is also introduced in, because there is no CCT technology in China at the moment. Detailed structure and principle of the coal particles cleanout technology system are described, while a theoretical model is formulated to optimally design the system based on the coal particles settling experimental data and jet pumping theory. It has been shown from field applications that the coal particles cleanout technology makes significant improvements in achieving high efficiency and preventing leakage in CBM wells. Moreover, the new technology reduces the skin damage and increase the production compared to non-vacuum CBM wells.


Author(s):  
M. Lubkov ◽  
O. Zaharchuk

Nowadays there are important problems of increasing efficiency of development and exploitation of gas deposits. There are problems associated with the growth of gas production in heterogeneous anisotropic reservoirs, increasing gas recovery, achieving economic efficiency and so on. In this situation, there are popular methods of computer modeling of gas productive reservoirs, because they allow getting information of the structure and characteristics of the gas reservoir, the distribution parameters of permeability and other important factors in it. They also allow evaluating and calculating uncertainty arising from the lack of information about the gas reservoir properties outside the well. Currently there are many methods of computer modeling, allowing solving various practical problems. From another hand there are some problems related to the accuracy and adequacy of simulation of heterogeneous anisotropic permeable collector systems in real conditions of gas deposits exploitation. On the base of combined finite-element-difference method for solving the nonstationary anisotropic piezoconductivity Lebenson problem, with calculating of heterogeneous distribution of permeable characteristics of the gas reservoir, we carried out modeling of filtration processes between production and injection wells. The results of computer modeling show that intensity of the filtration process between production and injection wells depends essentially on their location both in a shifting-isotropic and anisotropic gas reservoir. Therefore, for the effective using of poorly permeable shifting-isotropic gas-bearing reservoirs, it is necessary to place production and injection wells along the main anisotropy axes of the gas-bearing layers. At the placing production and injection well systems in low-permeable anisotropic reservoirs of a gas field, the most effective exchange between them will take place when the direction of increased permeability of the reservoirs coincides with the direction of the location of the wells. Obviously, the best conditions for gas production processes in any practical case can be achieved due to optimal selection of all anisotropic filtration parameters of the gas reservoir. One can use obtained results for practical geophysical works with a purpose optimizing of gas production activity in low-permeable heterogeneous anisotropic reservoirs. Presented method for more detailed investigation of low-permeable heterogeneous anisotropic gas-bearing deposits can be used.


Sign in / Sign up

Export Citation Format

Share Document