Performance analysis on the TMN-scheduling algorithm for industrial internet of things

Author(s):  
Jun Wang ◽  
Jing Zeng
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2871 ◽  
Author(s):  
Hao Zheng ◽  
Yixiong Feng ◽  
Yicong Gao ◽  
Jianrong Tan

Industrial Internet of Things (IoT) is a ubiquitous network integrating various sensing technologies and communication technologies to provide intelligent information processing and smart control abilities for the manufacturing enterprises. The aim of applying industrial IoT is to assist manufacturers manage and optimize the entire product manufacturing process to improve product quality and production efficiency. Data-driven product development is considered as one of the critical application scenarios of industrial IoT, which is used to acquire the satisfied and robust design solution according to customer demands. Performance analysis is an effective tool to identify whether the key performance have reached the requirements in data-driven product development. The existing performance analysis approaches mainly focus on the metamodel construction, however, the uncertainty and complexity in product development process are rarely considered. In response, this paper investigates a robust performance analysis approach in industrial IoT environment to help product developers forecast the performance parameters accurately. The service-oriented layered architecture of industrial IoT for product development is first described. Then a dimension reduction approach based on mutual information (MI) and outlier detection is proposed. A metamodel based on least squares support vector regression (LSSVR) is established to conduct performance prediction process. Furthermore, the predicted performance analysis method based on confidence interval estimation is developed to deal with the uncertainty to improve the robustness of the forecasting results. Finally, a case study is given to show the feasibility and effectiveness of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jingjing Wu ◽  
Guoliang Zhang ◽  
Jiaqi Nie ◽  
Yuhuai Peng ◽  
Yunhou Zhang

The demand for improving productivity in manufacturing systems makes the industrial Internet of things (IIoT) an important research area spawned by the Internet of things (IoT). In IIoT systems, there is an increasing demand for different types of industrial equipment to exchange stream data with different delays. Communications between massive heterogeneous industrial devices and clouds will cause high latency and require high network bandwidth. The introduction of edge computing in the IIoT can address unacceptable processing latency and reduce the heavy link burden. However, the limited resources in edge computing servers are one of the difficulties in formulating communication scheduling and resource allocation strategies. In this article, we use deep reinforcement learning (DRL) to solve the scheduling problem in edge computing to improve the quality of services provided to users in IIoT applications. First, we propose a hierarchical scheduling model considering the central-edge computing heterogeneous architecture. Then, according to the model characteristics, a deep intelligent scheduling algorithm (DISA) based on a double deep Q network (DDQN) framework is proposed to make scheduling decisions for communication. We compare DISA with other baseline solutions using various performance metrics. Simulation results show that the proposed algorithm is more effective than other baseline algorithms.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Sign in / Sign up

Export Citation Format

Share Document