scholarly journals Metaheuristic global path planning algorithm for mobile robots

Author(s):  
Stojanche Panov ◽  
Saso Koceski
2021 ◽  
Vol 11 (16) ◽  
pp. 7378
Author(s):  
Hongchao Zhuang ◽  
Kailun Dong ◽  
Yuming Qi ◽  
Ning Wang ◽  
Lei Dong

In order to effectively solve the inefficient path planning problem of mobile robots traveling in multiple destinations, a multi-destination global path planning algorithm is proposed based on the optimal obstacle value. A grid map is built to simulate the real working environment of mobile robots. Based on the rules of the live chess game in Go, the grid map is optimized and reconstructed. This grid of environment and the obstacle values of grid environment between each two destination points are obtained. Using the simulated annealing strategy, the optimization of multi-destination arrival sequence for the mobile robot is implemented by combining with the obstacle value between two destination points. The optimal mobile node of path planning is gained. According to the Q-learning algorithm, the parameters of the reward function are optimized to obtain the q value of the path. The optimal path of multiple destinations is acquired when mobile robots can pass through the fewest obstacles. The multi-destination path planning simulation of the mobile robot is implemented by MATLAB software (Natick, MA, USA, R2016b) under multiple working conditions. The Pareto numerical graph is obtained. According to comparing multi-destination global planning with single-destination path planning under the multiple working conditions, the length of path in multi-destination global planning is reduced by 22% compared with the average length of the single-destination path planning algorithm. The results show that the multi-destination global path planning method of the mobile robot based on the optimal obstacle value is reasonable and effective. Multi-destination path planning method proposed in this article is conducive to improve the terrain adaptability of mobile robots.


2021 ◽  
pp. 554-564
Author(s):  
Qingdang Li ◽  
Hui Zhao ◽  
Mingyue Zhang ◽  
Zhen Sun

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xuexi Zhang ◽  
Jiajun Lai ◽  
Dongliang Xu ◽  
Huaijun Li ◽  
Minyue Fu

As the basic system of the rescue robot, the SLAM system largely determines whether the rescue robot can complete the rescue mission. Although the current 2D Lidar-based SLAM algorithm, including its application in indoor rescue environment, has achieved much success, the evaluation of SLAM algorithms combined with path planning for indoor rescue has rarely been studied. This paper studies mapping and path planning for mobile robots in an indoor rescue environment. Combined with path planning algorithm, this paper analyzes the applicability of three SLAM algorithms (GMapping algorithm, Hector-SLAM algorithm, and Cartographer algorithm) in indoor rescue environment. Real-time path planning is studied to test the mapping results. To balance path optimality and obstacle avoidance, A ∗ algorithm is used for global path planning, and DWA algorithm is adopted for local path planning. Experimental results validate the SLAM and path planning algorithms in simulated, emulated, and competition rescue environments, respectively. Finally, the results of this paper may facilitate researchers quickly and clearly selecting appropriate algorithms to build SLAM systems according to their own demands.


Sign in / Sign up

Export Citation Format

Share Document