Numerical simulation of fluid flow and heat transfer in a passage with moving boundary

Author(s):  
D. S. Zhang ◽  
Q. W. Wang ◽  
W. Q. Tao
Author(s):  
Jongrak Choi ◽  
Nahmkeon Hur ◽  
Hee-Soo Kim

In the automotive manufacturing process, the paint drying process is very important to improve the appearance of the vehicle. In the present study, the fluid flow and heat transfer around a vehicle were numerically investigated for the purpose of predicting the drying performance of the paint drying process. In order to simulate the operating conditions of the paint drying process, the following techniques were used: relative moving boundary conditions, multiple reference frames, and conjugated heat transfer. The present numerical method was verified by comparing the numerical results of the temperature at several monitoring points on a vehicle, while using the experimental data. To evaluate the drying performance quantitatively, the absorbed heat energy that is closely related to the drying of paint was obtained from the numerical simulation. It was found that the drying performance is greatly affected by operating conditions such as the temperature and flow rate of blowing air. To improve the drying performance, the operating conditions of the paint drying process were optimized using the numerical results of various operating conditions.


2013 ◽  
Vol 712-715 ◽  
pp. 1600-1604
Author(s):  
Jing Zhao ◽  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

The excellent thermal hydraulic performances of coolers are the foundations of vehicular safety and stability. Structure, material, fin type and arrangement all have important effects on the thermal hydraulic performances. Numerical simulation method was adopted in this paper to investigate the effect of fin arrangement. The fluid flow and heat transfer performances were contrasted and analyzed under two different fin arrangements. It was found that fin arrangement effected thermal hydraulic performances severely and during the design process of a cooler, the performance requirements could be met through adjusting fin arrangements.


Author(s):  
Ephraim M. Sparrow ◽  
John P. Abraham ◽  
Paul W. Chevalier

The method of Design of Simulation (DOS) was used to guide and enhance a numerical simulation of fluid flow and heat transfer through offset-fin arrays which from the interior geometry of a cold plate. The basic problem involved 12 independent parameters. This prohibitive parametric burden was lessened by the creative use of nondimensionalization that was brought to fruition by a special transformation of the boundary conditions. Subsequent to the reduction of the number of parameters, the DOS method was employed to limit the number of simulation runs while maintaining an accurate representation of the parameter space. The DOS method also provided excellent correlations of both the dimensionless heat transfer and pressure drop results. The results were evaluated with respect to the Colburn Analogy for heat and momentum transfer. It was found that the offseting of the fins created a larger increase in the friction factor than that which was realized for the dimensionless heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document