scholarly journals Changes in cyclic AMP level of rat thyroid by acute and chronic stimulation of thyrotropin in vivo.

1976 ◽  
Vol 23 (2) ◽  
pp. 157-163 ◽  
Author(s):  
YASUKO NAKAMURA ◽  
MITSUO SUZUKI ◽  
ISAO KOBAYASHI ◽  
YONOSUKE SHIMOMURA ◽  
TADAO KAKEGAWA
1982 ◽  
Vol 99 (1) ◽  
pp. 349-362
Author(s):  
M. CHAMBERLIN ◽  
J. E. PHILLIPS

1. Recta of desert locusts were short-circuited and depleted of endogenous substrates by exposing them to saline containing cyclic AMP but no metabolites. Individual substrates were then added to substrate-depleted recta and the change in short-circuit current (Isc) monitored. 2. Proline or glucose (50 mM) caused by far the largest increase in Isc of all substrates tested. Stimulation of the Isc by proline was not dependent upon external sodium, but did require external chloride. 3. Physiological levels of proline also caused a large increase in Isc, while physiological levels of glucose produced a much smaller stimulation. Over 90% of the proline-dependent Isc stimulation can be produced by adding 15 mM proline solely to the lumen side of the tissue. 4. These results are discussed with regard to rectal oxidative metabolism and availability of metabolic substrates in vivo. High levels of proline in Malpighian tubule fluid are probably the major substrate source for rectal Cl−transport. Note:


1979 ◽  
Vol 237 (5) ◽  
pp. C200-C204 ◽  
Author(s):  
D. J. Stewart ◽  
J. Sax ◽  
R. Funk ◽  
A. K. Sen

Stimulation of salt galnd secretion in domestic ducks in vivo increased the cyclic GMP concentration of the tissue, but had no effect on cyclic AMP levels. Methacholine, which is known to stimulate sodium transport by the glands both in vivo and in vitro, stimulated ouabain-sensitive respiration in salt gland slices. Cyclic GMP stimulated ouabain-sensitive respiration to the same extent as methacholine. Guanylate cyclase stimulators, hydroxylamine and sodium azide, also stimulated ouabain-sensitive respiration. The stimulation of ouabain-sensitive respiration by methacholine was blocked either by atropine or by removal of calcium from the incubation medium. The stimulation of ouabain-sensitive respiration by cyclic GMP still occurred in the absence of calcium. The above observations seem to indicate that cyclic GMP acts as a tertiary link in the process of stimulus-secretion coupling in the tissue.


1979 ◽  
Vol 237 (3) ◽  
pp. F218-F225 ◽  
Author(s):  
M. J. Bia ◽  
S. Dewitt ◽  
J. N. Forrest

The effects of in vivo physiologic doses of vasopressin and 1-deamino-8-D-arginine vasopressin (DDAVP) on the cyclic AMP content of plasma, urine, and renal papillary tissue were determined in the ADH-deficient Brattleboro rat. During clearance studies, plasma cyclic AMP concentrations and both total and nephrogenous urinary cyclic AMP excretion in vasopressin- and DDAVP-treated rats were similar to the values in time-matched controls. In contrast, in situ renal papillary cyclic AMP content was higher (P less than 0.001) in both vasopressin- (35.7 +/- 3.6 pmol/mg protein) and DDAVP- (29.7 +/- 2.2 pmol/mg protein) treated rats compared to controls (15.1 +/- 1.3 pmol/mg protein). Endogenous stimulation of vasopressin by dehydration in normal rats increased both papillary cyclic AMP content (27.1 +/- 2.7 pmol/mg protein) and urine osmolality, whereas no change in papillary cyclic AMP was observed following dehydration in Brattleboro rats (13.6 +/- 0.8 pmol/mg protein) despite an increase in urine osmolality. The results demonstrate that changes in cyclic AMP following in vivo vasopressin are best demonstrated by measurement of in situ cyclic AMP content of the renal papilla, whereas total urinary cyclic AMP and nephrogenous cyclic AMP are not useful indices of tubular sensitivity to this hormone.


1988 ◽  
Vol 253 (3) ◽  
pp. 809-818 ◽  
Author(s):  
K Gaston ◽  
B Chan ◽  
A Kolb ◽  
J Fox ◽  
S Busby

Gene manipulation techniques have been used to alter the binding site for the cyclic AMP-cyclic AMP receptor protein complex (cAMP-CRP) at the regulatory region of the Escherichia coli galactose (gal) operon. The effects of these changes on CRP-dependent stimulation of expression from the galP1 promoter in vivo have been measured, and gel binding assays have been used to measure the affinity of cAMP-CRP for the modified sites. Firstly we have deleted progressively longer sequences from upstream of the gal CRP site in order to locate the functional limit of the site. A deletion to -49, removing the first base that corresponds to the consensus sequence for a CRP binding site, is sufficient to reduce CRP binding and block CRP-dependent stimulation of P1. Secondly, we used synthetic oligonucleotides to invert the asymmetric nucleotide sequence at the gal CRP binding site or to make the sequence symmetric. Inversion of the site has little effect on CRP binding, the architecture of open complexes at P1 revealed by DNAase I footprinting, or the stimulation of transcription from P1. Making the site symmetric increases the affinity for CRP by over 50-fold and leads to increased transcription from P1, whilst hardly altering the DNAase I footprint of open complexes. Our results confirm that the strength of binding of CRP depends on the nature of the site and show that it is this that principally accounts for differences in CRP-dependent stimulation of transcription.


1978 ◽  
Vol 170 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Felix H. A. Janszen ◽  
Brian A. Cooke ◽  
Maria J. A. Van Driel ◽  
Henk J. Van Der Molen

The mechanism of action of lutropin on the stimulation of the synthesis of a specific lutropin-induced protein in rat testis Leydig cells was investigated. Lutropin-induced protein has a mol.wt. of approx. 21000 and is detected by labelling the Leydig-cell proteins with [35S]methionine, followed by separation by polyacrylamide-gel electrophoresis and radioautography of the dried gel. The incorporation of35S into lutropin-induced protein was used as an estimate for the synthesis of the protein. Incubation of Leydig cells with dibutyryl cyclic AMP or cholera toxin also resulted in the stimulation of synthesis of the protein. Synthesis of lutropin-induced protein, when maximally stimulated with 100ng of lutropin/ml, could not be stimulated further by addition of dibutyryl cyclic AMP. Addition of 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, further increased synthesis of the protein in the presence of a submaximal dose of lutropin (10ng/ml) but not in the absence of lutropin or with maximal amounts of lutropin (100 and 1000ng/ml). Actinomycin D prevented the effect of lutropin on the stimulation of lutropin-induced protein synthesis when added immediately or 1h after the start of the incubation, but not when added after 5–6h. This is interpreted as reflecting that, after induction of mRNA coding for lutropin-induced protein, lutropin had no influence on the synthesis of the protein in the presence of actinomycin D. Synthesis of the protein was also stimulated in vivo by injection of choriogonadotropin into rats 1 day after hypophysectomy, and the time course of this stimulation of lutropin-induced protein synthesis in vivo was similar to that obtained by incubating Leydig cells in vitro with lutropin. From these results it is concluded that stimulation of lutropin-induced protein synthesis by lutropin is most probably mediated by cyclic AMP and involves synthesis of mRNA.


1976 ◽  
Vol 82 (3) ◽  
pp. 587-599 ◽  
Author(s):  
J. Ramachandran ◽  
Y. C. Kong ◽  
Susanna Liles

ABSTRACT Both ACTH and NPS-ACTH in which the single tryptophan residue of the hormone is modified were able to stimulate adrenal corticosterone concentration to the same extent in hypophysectomized rats, although a higher dose of NPS-ACTH was required. ACTH stimulated adrenal cyclic AMP levels 120-fold in hypophysectomized rats whereas NPS-ACTH caused a marginal increase. In the case of ACTH, low doses of the hormone capable of producing maximal stimulation of corticosterone synthesis did not produce any detectable change in cyclic AMP concentration. The rates of secretion of corticosterone induced by ACTH and NPS-ACTH in vivo were the same. NPS-ACTH was found to be 1.2% as potent as ACTH. The role of cyclic AMP in adrenal repair was investigated by administering equipotent doses of ACTH or NPS-ACTH to hypophysectomized rats. In adult rats both failed to produce a significant increase in adrenal weight. Adrenal function (measured by responsiveness to exogenous ACTH in vitro) was restored by NPS-ACTH but not to the same degree as ACTH. In hypophysectomized weanling rats, ACTH produced a small but significant increase in adrenal weight but NPS-ACTH did not. These results suggest that an increase in adrenal cyclic AMP may not be obligatory for the stimulation of steroidogenesis by ACTH and that some of the trophic actions of the hormone may be mediated by cyclic AMP.


1991 ◽  
Vol 124 (4) ◽  
pp. 425-433 ◽  
Author(s):  
Haruki Fukuda ◽  
Yasuhiro Ito ◽  
Ryouji Hirota ◽  
Motomu Tsuji ◽  
Hiroshi Mori

Abstract. Effects of deficiency in ascorbic acid on in vivo production of corticosterone and testosterone were examined using a mutant strain of rats unable to synthesize ascorbic acid. The adrenal weight of scorbutic rats was larger, and corticosterone levels in plasma and adrenal tissues were higher than those of ascorbic acid-supplied (ascorbutic) rats. Acute and chronic stimulation with ACTH increased corticosterone levels in both ascorbutic and scorbutic rats. In contrast, weights of seminal vesicles and ventral prostates in unstimulated scorbutic rats were smaller, and testosterone levels in plasma and testicular tissues were lower than those in ascorbutic rats. Acute stimulation with hCG increased testosterone levels only slightly in plasma and not in testicular tissues of scorbutic rats, when testosterone levels in ascorbutic rats reached a maximum. Chronic stimulation with hCG increased testosterone levels remarkably in both ascorbutic and scorbutic rats. These findings seem to indicate that ascorbic acid is not essential for the synthesis of steroid hormones. The scurvy seems to increase plasma ACTH levels secondary to the stress, resulting in the stimulation of the adrenals. In contrast, a prolonged deficiency in ascorbic acid appears to decrease plasma gonadotropin levels, and may reduce the sensitivity of testes to gonadotropins.


1964 ◽  
Vol 206 (5) ◽  
pp. 1145-1150 ◽  
Author(s):  
Israel Posner ◽  
Enrique Pimentel

Thyroids of normal or thyroxine ( T4)-pretreated rats were incubated in vitro in a serum medium containing I131. It was found that the addition of either a whole rat adenohypophysis, a crude rat anterior pituitary extract, or of commercial bovine thyrotrophin (TSH) to the medium caused a slight stimulation of I131 release and no apparent stimulation but rather an immediate and considerable inhibition of thyroid-I131 uptake. Preincubation of rat thyroid with crude anterior pituitary extract resulted in a prolonged inhibitory effect on the thyroid-I131 uptake. In vivo studies showed that shortly after TSH administration a similar inhibition of uptake occurred in normal rats, although allowing 24 hr for TSH stimulation brought about no change in iodine uptake in thyroids of normal and a marked increase in uptake by thyroids of T4-pretreated rats. The inhibition of thyroid-I131 uptake was assumed to have been caused either by TSH itself, or by a thyroid-inhibiting factor of adenohypophysial origin present in commercial TSH preparations as a contaminant.


Sign in / Sign up

Export Citation Format

Share Document