Development of an All-in-One Type Adsorption Heat Pump for Heating Application

Author(s):  
Lihua Dong ◽  
Hongyu Huang ◽  
Noriyuki Kobayashi

The present research of adsorption heat pump system for heating application mainly focuses on its miniaturization and high output. When the adsorption heat pump is downsized the heat energy is insufficient to meet heating application. In addition, a large amount of low-temperature heat energy in industry has not been utilized but discharged into the atmosphere as waste heat. To improve energy efficiency and reduce carbon dioxide emission, it is important to effectively utilize the low-temperature heat source which is usually discarded as waste heat. In order to solve the problem between the miniaturization and the high output, a miniature all-in-one type adsorption heat pump which can effectively utilize waste heat is designed. In this design, a heat exchanger coated with adsorption material is used as an adsorber or desorber, and another heat exchanger is used as an evaporator or condenser. A seal unit is formed by assembling two heat exchangers into a vacuum tight container and is connected to the surroundings only by hydraulic piping. Moreover, the adsorbent is a functional adsorbent material-zeolite (AQSOA FAM-Z02, Mitsubishi Plastics) which can be regenerated by utilizing the low-temperature heat energy between 75 and 100°C. In this paper the design and experimental performance of this all-in-one type adsorption heat pump are described.

2002 ◽  
Vol 2002 (0) ◽  
pp. 63-64
Author(s):  
Ken Kuwahara ◽  
Bidyut Saha ◽  
Shigeru Koyama ◽  
Katsuhiko Furukawa ◽  
Keishi Nishihara ◽  
...  

2021 ◽  
Vol 42 (3) ◽  
pp. 333-348
Author(s):  
Zhenpeng Bai ◽  
Yanfeng Li ◽  
Jin Zhang ◽  
Alan Fewkes ◽  
Hua Zhong

This study investigated the optimal design of a capillary heat exchanger device for the heat pump system and its innovative engineering application in a building. The overall aim was to use a capillary heat exchanger to obtain energy in coastal areas for promoting renewable energy in low-carbon building design. Initially, the main factors affecting the efficiency of the capillary heat exchanger were identified, a mathematical model was then established to analyse the heat transfer process. The analysis showed the flow rate and the capillary length are the key factors affecting the efficiency of the capillary heat exchanger. Secondly, to optimize the structural design of the capillary heat exchanger, the heat energy transfer is calculated with different lengths of the capillary under various flow rates in summer and winter conditions, respectively. Thirdly, a typical building is selected to analyse the application of the capillary heat exchanger for extracting energy in the coastal area. The results show the performance of the selected capillary heat exchanger heat pump system, in winter, the heat energy transfer rate is 60 W/m2 when the seawater temperature is 3.7 °C; in summer, the heat energy transfer rate is 150 W/m2 when the seawater temperature is 24.6 °C. Finally, the above field test results were examined using a numerical simulation model, the test and simulation results agree with each other quite well. This paper is conducive in promoting the development of the capillary heat exchanger heat pump as an innovative sustainable technology for net-zero energy and low carbon buildings using renewable energy in coastal areas. Practical application: A recently proposed capillary heat exchanger is used as an energy extraction and utilisation device to obtain energy in coastal areas for promoting renewable energy in low-carbon building design. This paper explores the application of a capillary heat exchanger as both cold and heat sources for application in typical low-rise buildings. The analysis of the heat energy transfer rate of a typical low-rise building located in a coastal area in summer and winter provides guidance for the application of capillary heat exchangers.


Author(s):  
Shuichi Umezawa ◽  
Haruo Amari ◽  
Hiroyuki Shimada ◽  
Takashi Matsuhisa ◽  
Ryo Fukushima ◽  
...  

This paper reports application study of newly developed turbo heat pump for 130 degrees Celsius (°C) water for an industrial process in an actual factory. The heat pump is characterized by high efficiency and large heat output, by using a state-of-the-art turbo compressor. The heat pump requires a low temperature heat source in order to achieve high efficiency. The heat demand is for several drying furnaces in the factory, which requires producing hot air of 120 °C. The heat exchanger was designed to produce the hot air. Experiments were conducted to confirm the performance of the heat exchanger under a reduced size of the heat exchanger. Low temperature heat sources are from both exhaust gas of the drying furnaces and that of an annealing furnace. The heat exchangers were also designed to recover heat of the exhaust gas from the two types of furnace. A thermal storage tank was prepared for the low temperature heat source, and for adjusting the time difference between the heat demand and the low temperature heat source. The size of the tank was determined by considering the schedule of furnaces operations. As a result of the present study, it was confirmed that the heat pump was able to satisfy the present heat demand while retaining high efficiency. Primary energy consumption and CO2 emission of the heat pump were calculated on the basis of the present results in order to compare them with those of the boilers.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Maarten G. Sourbron ◽  
Nesrin Ozalp

With reducing energy demand and required installed mechanical system power of modern residences, alternate heat pump system configurations with a possible increased economic viability emerge. Against this background, this paper presents a numerically examined energy feasibility study of a solar driven heat pump system for a low energy residence in a moderate climate, where a covered flat plate solar collector served as the sole low temperature heat source. A parametric study on the ambient-to-solarfluid heat transfer coefficient was conducted to determine the required solar collector heat transfer characteristics in this system setup. Moreover, solar collector area and storage tank volume were varied to investigate their impact on the system performance. A new performance indicator “availability” was defined to assess the contribution of the solar collector as low temperature energy source of the heat pump. Results showed that the use of a solar collector as low temperature heat source was feasible if its heat transfer rate (UA-value) was 200 W/K or higher. Achieving this value with a realistic solar collector area (A-value) required an increase of the overall ambient-to-solarfluid heat transfer coefficient (U-value) with a factor 6–8 compared to the base case with heat exchange between covered solar collector and ambient.


1976 ◽  
Vol 190 (1) ◽  
pp. 255-265 ◽  
Author(s):  
G. Angelino ◽  
P. Ferrari ◽  
G. Giglioli ◽  
E. Macchi

SYNOPSIS A system is described for low-temperature heat generation for space heating envisaging the adoption of an organic fluid external combustion engine as the direct drive for a heat pump. Waste heat from the engine condenser contributes a substantial fraction of the overall heat output. Progress in experimental work to ascertain the suitability of organic fluids to operate at comparatively high temperature without appreciable decomposition or corrosive action on materials is reported. Results are given of a computation program predicting the performance of systems of various capacity. For the examples considered yearly fuel consumption was calculated to range between 41 and 48% of that of a conventional plant.


Sign in / Sign up

Export Citation Format

Share Document