scholarly journals CONNECTIONS IN WOOD AND MATERIAL EFFICIENCY: WOOD FORMATION FOLLOWS MECHANICAL LOAD / VERBINDUNGEN IM HOLZ UND MATERIALEFFIZIENZ: DIE HOLZBILDUNG FOLGT DER MECHANISCHEN BELASTUNG

2021 ◽  
pp. 30-38
Author(s):  
Ulrich Müller ◽  
Alfred Teischinger
2018 ◽  
Author(s):  
Grischa Bratke ◽  
Steffen Willwacher ◽  
David Maintz ◽  
Gert-Peter Brüggemann

2019 ◽  
Author(s):  
john andraos

This paper proposes a standardized format for the preparation of process green synthesis reports that can be applied to chemical syntheses of active pharmaceutical ingredients (APIs) of importance to the pharmaceutical industry. Such a report is comprised of the following eight sections: a synthesis scheme, a synthesis tree, radial pentagons and step E-factor breakdowns for each reaction step, a tabular summary of key material efficiency step and overall metrics for a synthesis plan, a mass process block diagram, an energy consumption audit based on heating and cooling reaction and auxiliary solvents, a summary of environmental and safety-hazard impacts based on organic solvent consumption using the Rowan solvent greenness index, and a cycle time process schedule. Illustrative examples of process green synthesis reports are given for the following pharmaceuticals: 5-HT2B and 5-HT7 receptors antagonist (Astellas Pharma), brivanib (Bristol-Myers Squibb), and orexin receptor agonist (Merck). Methods of ranking synthesis plans to a common target product are also discussed using 6 industrial synthesis plans of apixaban (Bristol-Myers Squibb) as a working example. The Borda count method is suggested as a facile and reliable computational method for ranking multiple synthesis plans to a common target product using the following 4 attributes obtained from a process green synthesis report: process mass intensity, mass of sacrificial reagents used per kg of product, input enthalpic energy for solvents, and Rowan solvent greenness index for organic solvents.<br>


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 35-44
Author(s):  
S. G. Sandomirski

The main magnetic parameters sensitive to the structure of steels are the parameters of their saturation loop of magnetic hysteresis: the coercive force Hcs and remanent magnetization Mrs. The saturation magnetization or saturation intensity Mr is most sensitive to the phase composition of steels. The variety of steel grades and modes of technological treatment (e.g., heat treatment, mechanical load) determined the use of magnetic structurescopy and magnetic characteristics — the coercive force Hc, remanent magnetization Mr , and specific hysteresis losses Wh on the subloops of the magnetic hysteresis of steels — as control parameters in diagnostics of the stressed and structural states of steel structures and pipelines. It has been shown that changes in Hc, Mr , and Wh are more sensitive to structural stresses and structures of steels than the parameters of the saturation hysteresis loop of magnetic hysteresis (Hcs, Mrs, and Mrs). The formulas for calculating Hc, Mr and Wh are presented to be used for estimation of changes in the parameters upon heat treatment of steels. Features of the structural sensitivity of the subloop characteristics and expediency of their use for magnetic structural and phase analyzes are determined. Thus, the range of changes in Ìr attributed to the structural changes in steels upon gradual Hm decrease is many times wider compared to the range of possible changes in Mrs under the same conditions. Conditions (relations between the magnetic parameters) and recommendations regarding the choice of the field strength Hm are given which provide the justified use of Hc, Mr and Wh parameters in magnetic structurescopy


Sign in / Sign up

Export Citation Format

Share Document