Human cathepsins B, H and L: characterization by amino acid sequences and some kinetics of inhibition by the kininogens

Author(s):  
W. Machleidt ◽  
A. Ritonja ◽  
T. Popovic ◽  
M. Kotnik ◽  
J. Brzin ◽  
...  
FEBS Letters ◽  
2006 ◽  
Vol 580 (6) ◽  
pp. 1681-1684 ◽  
Author(s):  
Silvia Vilasi ◽  
Roberta Dosi ◽  
Clara Iannuzzi ◽  
Clorinda Malmo ◽  
Augusto Parente ◽  
...  

1993 ◽  
Vol 289 (2) ◽  
pp. 533-538 ◽  
Author(s):  
M E Veronese ◽  
C J Doecke ◽  
P I Mackenzie ◽  
M E McManus ◽  
J O Miners ◽  
...  

Evidence from human studies in vivo and in vitro strongly suggests that the methylhydroxylation of tolbutamide and the 4-hydroxylation of phenytoin, the major pathways in the elimination of these two drugs, are catalysed by the same cytochrome P-450 isoenzyme(s). In the present study we used site-directed mutagenesis and cDNA expression in COS cells to characterize in detail the kinetics of tolbutamide and phenytoin hydroxylations by seven CYP2C proteins (2C8, 2C9 and variants, and 2C10) in order to define the effects of small changes in amino acid sequences and the likely proteins responsible in the metabolism of these two drugs in man. Tolbutamide was hydroxylated to varying extents by all expressed cytochrome P-450 isoenzymes, although activity was much lower for the expressed 2C8 protein. While the apparent Km values for the 2C9/10 isoenzymes (71.6-131.7 microM) were comparable with the range of apparent Km values previously observed in human liver microsomes, the apparent Km for 2C8 (650.5 microM) was appreciably higher. The 2C8 enzyme also showed quite different sulphaphenazole inhibition characteristics. The 4-hydroxylation of phenytoin was also more efficiently catalysed by the 2C9/10 enzymes. These enzymes showed similarities in kinetics of phenytoin hydroxylation and sulphaphenazole inhibition compared with human liver phenytoin hydroxylase. Also of interest was the observation that, among the 2C9 variants, small differences in amino acid composition could appreciably affect both tolbutamide and phenytoin hydroxylations. The amino acid substitution Cys-144->Arg increased both the rates of tolbutamide and phenytoin hydroxylations, while the Leu-359->Ile change had a greater effect on phenytoin hydroxylation. We conclude that: (1) although 2C8 and 2C9/10 proteins metabolize tolbutamide. only 2C9/10 proteins play a major role in human liver; (2) 2C9/10 proteins also appear to be chiefly responsible for phenytoin hydroxylation; and (3) subtle differences in the amino acid composition of these 2C9/10 proteins can affect the functional specificities towards both tolbutamide and phenytoin.


Polyhedron ◽  
2017 ◽  
Vol 121 ◽  
pp. 142-154 ◽  
Author(s):  
Sandhya Rani Gogoi ◽  
Gangutri Saikia ◽  
Kabirun Ahmed ◽  
Rituparna Duarah ◽  
Nashreen S. Islam

1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


1966 ◽  
Vol 16 (01/02) ◽  
pp. 277-295 ◽  
Author(s):  
A Silver ◽  
M Murray

SummaryVarious investigators have separated the coagulation products formed when fibrinogen is clotted with thrombin and identified fibrinopeptides A and B. Two other peaks are observed in the chromatogram of the products of coagulation, but these have mostly been dismissed by other workers. They have been identified by us as amino acids, smaller peptides and amorphous material (37). We have re-chromatographed these peaks and identified several amino acids. In a closed system of fibrinogen and thrombin, the only reaction products should be fibrin and peptide A and peptide B. This reasoning has come about because thrombin has been reported to be specific for the glycyl-arginyl peptide bond. It is suggested that thrombin also breaks other peptide linkages and the Peptide A and Peptide B are attacked by thrombin to yield proteolytic products. Thrombin is therefore probably not specific for the glycyl-arginyl bond but will react on other linkages as well.If the aforementioned is correct then the fibrinopeptides A and B would cause an inhibition with the coagulation mechanism itself. We have shown that an inhibition does occur. We suggest that there is an autoinhibition to the clotting mechanism that might be a control mechanism in the human body.The experiment was designed for coagulation to occur under controlled conditions of temperature and time. Purified reactants were used. We assembled an apparatus to record visually the speed of the initial reaction, the rate of the reaction, and the density of the final clot formed after a specific time.The figures we derived made available to us data whereby we could calculate and plot the information to show the mechanism and suggest that such an inhibition does exist and also further suggest that it might be competitive.In order to prove true competitive inhibition it is necessary to fulfill the criteria of the Lineweaver-Burk plot. This has been done. We have also satisfied other criteria of Dixon (29) and Bergman (31) that suggest true competitive inhibition.


1979 ◽  
Author(s):  
Takashi Morita ◽  
Craig Jackson

Bovine Factor X is eluted in two forms (X1and X2) from anion exchange chromatographic columns. These two forms have indistinguishable amino acid compositions, molecular weights and specific activities. The amino acid sequences containing the γ-carboxyglutamic acid residues have been shown to be identical in X1 and X2(H. Morris, personal communication). An activation peptide is released from the N-terminal region of the heavy chain of Factor X by an activator from Russell’s viper venom. This peptide can be isolated after activation by gel filtration on Sephadex G-100 under nondenaturing conditions. The activation peptides from a mixture of Factors X1 and X2 were separated into two forms by anion-exchange chromatography. The activation peptide (AP1) which eluted first was shown to be derived from Factor X1. while the activation peptiae (AP2) which eluted second was shown to be derived from X2 on the basis of chromatographic separations carried out on Factors X1 and X2 separately. Factor Xa was eluted as a symmetrical single peak. On the basis of these and other data characterizing these products, we conclude that the difference between X1 and X2 are properties of the structures of the activation peptides. (Supported by a grant HL 12820 from the National Heart, Lung and Blood Institute. C.M.J. is an Established Investigator of the American Heart Association).


2020 ◽  
Vol 44 (3) ◽  
pp. 177-189
Author(s):  
Momir Dunjic ◽  
Stefano Turini ◽  
Dejan Krstic ◽  
Katarina Dunjic ◽  
Marija Dunjic ◽  
...  

Radiofrequency therapy is an unconventional method, already applied for some time, with numerous results in numerous clinical pictures. Our group has developed a software, later called SONGENPROT-SOLARIS, capable of directly converting nucleotide sequences (DNA and/or RNA) and amino acid sequences (polypeptides and proteins) into musical sequences, based on mathematic matrices, designed by the French physicist and musician Joel Sternheimer, which allows to associate a musical note with a nucleotide or an amino acid. Innovation in our software is that, in the algorithm that defines it, a variant is directly implemented that allows the reproduction of sounds, phase-shifted by 30 Hz, between one ear and another reproducing the phenomenon of Binaural Tones, capable of induce a specific brain activity and also the release of particles called solitons. Thanks to this software we have developed a technique called MMT (Molecular Music Therapy) and currently, we are in the phase of applying the technique on a cohort of 91 patients, with a high spectrum of clinical pictures, examining the same, using the technique Bi-Digital-ORing-Test (BDORT), before and after treatment with MMT. Aim of project is to stimulate the expression of a specific gene (the same genetic sequence that the patient listens to, translated into music), only through the use of sound sequences. We have concentrated our attention on three main molecules: Sirtuin-1, Telomers and TP-53. The results obtained with BDORT, after treatment with MMT, showed a significant increase in the values of the three molecules, on all the examined patients, demonstrating the operative efficacy of the technique and the its applicability to numerous diseases. In order to confirm the data obtained by BDORT, we propose, with the help of an accredited laboratory, to perform epigenetic tests on the three parameters listed above, paving the way to understanding how frequencies can influence gene expression.


Sign in / Sign up

Export Citation Format

Share Document