unfolding kinetics
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 11)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Faez Iqbal Khan ◽  
Shahid Ali ◽  
Wenjing Chen ◽  
Farah Anjum ◽  
Alaa Shafie ◽  
...  

Background: Sphingosine kinase 1 (SPhK1) is a crucial signaling enzyme involved in cell proliferation, cellular survival, stimulation of angiogenesis, and apoptosis prevention. Recently, we have reported the unfolding kinetics of SPhK1 using molecular dynamics (MD) simulation, circular dichroism and fluorescence spectroscopy. We found that SPhK1 showed a biphasic unfolding with an intermediate state (~ 4.0 M urea). Objective: We aim to understand the impact of MD simulation duration on the structure, function and dynamics of proteins. In order to get deeper insights into the folding mechanism an extended MD simulation is required. Method: Here, we extended the MD simulations time scale from 100 to 300 ns on SPhK1 at increasing urea concentration to explore structural changes in the SPhK1. Results: The results suggested a constant form of the unfolding of SPhK1 upon extending the simulation time scale at different urea concentrations. Furthermore, we showed step by step unfolding and percentage of secondary structure contents in SPhK1 under the influence of urea at each concentration. Conclusion: The results from the current work revealed a uniform pattern of the SPhK1 unfolding at different urea concentrations. This study provides deeper mechanistic insights into the urea-induced denaturation of SPhK1.


2021 ◽  
Vol 118 (31) ◽  
pp. e2023856118
Author(s):  
Cihan Ayaz ◽  
Lucas Tepper ◽  
Florian N. Brünig ◽  
Julian Kappler ◽  
Jan O. Daldrop ◽  
...  

We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the α-helix forming polypeptide alanine9 for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote–Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.


2021 ◽  
Author(s):  
Wenzhao Liu ◽  
Luyi Feng ◽  
Wenpeng Zhu ◽  
Zhenyu Zhou ◽  
Ran Chen ◽  
...  

The biological activity of tRNA is closely related to its mechanical folding properties. Although previous studies focused on the folding and unfolding mechanism of tRNA, its kinetics are largely unknown. In this study, combining optical tweezers and molecule dynamics simulations, we characterized the mechanical folding and unfolding processes of a single unmodified Saccharomyces cerevisiae tRNAphe. We identified the intermediates and pathways for tRNA mechanical folding and unfolding in the presence of Mg2+, discovering that the folding/unfolding kinetics of D stem-loop and T stem-loop but not the anti-codon stem-loop significantly affected by their upstream and downstream structures. The cooperative unfolding of the tRNA in the presence of Mg2+ lead to a large hysteresis between the folding and unfolding pathway, and such hysteresis and unfolding cooperativity are significantly reduced by lowering the Mg2+ concentration or mutating the nucleotides forming the 'elbow' structure. Moreover, both steered molecular dynamics simulation and optical tweezers experiment results support that, formation of tertiary interactions in the elbow region increases energy barriers of the mechanical unfolding pathway, including those in between intermediates, and determines the overall unfolding cooperativity. Our studies may shed light on the detailed tRNA chaperone mechanism of TruB and TrmA.


2020 ◽  
Author(s):  
Pavel I. Zhuravlev ◽  
Michael Hinczewski ◽  
D. Thirumalai

AbstractDeviations from linearity in the dependence of the logarithm of protein unfolding rates, log ku(f), as a function of mechanical force, f, measurable in single molecule experiments, can arise for many reasons. In particular, upward curvature in log ku(f) as a function of f implies that the underlying energy landscape must be multidimensional with the possibility that unfolding ensues by parallel pathways. Here, simulations using the SOP-SC model of a wild type β-sandwich protein and several mutants, with immunoglobulin folds, show upward curvature in the unfolding kinetics. There are substantial changes in the structures of the transition state ensembles as force is increased, signaling a switch in the unfolding pathways. Our results, when combined with previous theoretical and experimental studies, show that parallel unfolding of structurally unrelated single domain proteins can be determined from the dependence of log ku(f) as a function of force (or log ku[C] where [C] is the denaturant concentration).


2020 ◽  
Author(s):  
Soham Chakraborty ◽  
Deep Chaudhuri ◽  
Dyuti Chaudhuri ◽  
Vihan Singh ◽  
Souradeep Banerjee ◽  
...  

AbstractStudies of free energy, kinetics or elasticity are common to most disciplines of science. Detailed quantification of these properties demands number of specialized technologies. Furthermore, monitoring ‘perturbation’ in any of these properties, in presence of external stimuli (protein/DNA/drugs/nanoparticles etc.), requires multiple experiments. However, none of these available technologies can monitor these perturbations simultaneously in real time on the very same molecule in a single shot experiment.Here we present real-time microfluidics-magnetic tweezers technology with the unique advantage of tracking a single protein dynamics for hours, in absence of any significant drift, with the flexibility of changing physical environment in real time. Remarkable stability of this technique allows us to quantify five molecular properties (unfolding kinetics, refolding kinetics, conformational change, chain flexibility, and ΔG for folding/unfolding), and most importantly, their dynamic perturbation upon interacting with salt on the same protein molecule from a single experiment. We observe salt reshapes the energy landscape by two specific ways: increasing the refolding kinetics and decreasing the unfolding kinetics, which is characterized as mean first passage time. Importantly, from the same trajectory, we calculated the flexibility of the protein polymer, which changes with salt concentration and can be explained by our modified ‘electrolyte FJC model’. The correlation between ΔG, kinetics and polymer elasticity strongly argues for a stiffness driven energy landscape of proteins. Having the advantage of sub nanometer resolution, this methodology will open new exciting window to study proteins – one such examples is demonstrated in this article: electrolyte driven conformational fluctuation under force, which was not studied before.


2020 ◽  
Vol 168 (1) ◽  
pp. 53-62
Author(s):  
Takahiro Maruno ◽  
Tadayasu Ohkubo ◽  
Susumu Uchiyama

Abstract Isothermal titration calorimetry (ITC) directly provides thermodynamic parameters depicting the energetics of intermolecular interactions in solution. During ITC experiments, a titration syringe with a paddle is continuously rotating to promote a homogeneous mixing. Here, we clarified that the shape of the paddles (flat, corkscrew and small-pitched corkscrew) and the stirring rates influence on the thermodynamic parameters of protein–ligand interaction. Stirring with the flat paddle at lower and higher rate both yielded a lower exothermic heat due to different reasons. The complete reaction with no incompetent fractions was achieved only when the stirring was performed at 500 or 750 rpm using the small-pitched corkscrew paddle. The evaluation of the protein solution after 1,500 rpm stirring indicated that proteins in the soluble fraction decreased to 94% of the initial amount, among which 6% was at an unfolded state. In addition, a significant increase of micron aggregates was confirmed. Furthermore, a new approach for the determination of the unfolding kinetics based on the time dependence of the total reaction heat was developed. This study demonstrates that a proper stirring rate and paddle shape are essential for the reliable estimation of thermodynamic parameters in ITC experiments.


2019 ◽  
Vol 73 (10-11) ◽  
pp. 633-639
Author(s):  
Heiner N. Raum ◽  
Julia Schörghuber ◽  
Matthias Dreydoppel ◽  
Roman J. Lichtenecker ◽  
Ulrich Weininger

Abstract Aromatic side chains are often key residues in enzyme active sites and protein binding sites, making them attractive probes of protein dynamics on the millisecond timescale. Such dynamic processes can be studied by aromatic 13C or 1H CPMG relaxation dispersion experiments. Aromatic 1H CPMG relaxation dispersion experiments in phenylalanine, tyrosine and the six-ring moiety of tryptophan, however, are affected by 3J 1H–1H couplings which are causing anomalous relaxation dispersion profiles. Here we show that this problem can be addressed by site-selective 1H/2H labeling of the aromatic side chains and that artifact-free relaxation dispersion profiles can be acquired. The method has been further validated by measuring folding–unfolding kinetics of the small protein GB1. The determined rate constants and populations agree well with previous results from 13C CPMG relaxation dispersion experiments. Furthermore, the CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained directly from the spectra. In summary, site-selective 1H/2H labeling enables artifact-free aromatic 1H CPMG relaxation dispersion experiments in phenylalanine and the six-ring moiety of tryptophan, thereby extending the available methods for studying millisecond dynamics in aromatic protein side chains.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2877 ◽  
Author(s):  
Irene Ponzo ◽  
Friederike M. Möller ◽  
Herwin Daub ◽  
Nena Matscheko

Therapeutic and diagnostic nucleic acid aptamers are designed to bind tightly and specifically to their target. The combination of structural and kinetic analyses of aptamer interactions has gained increasing importance. Here, we present a fluorescence-based switchSENSE aptasensor for the detailed kinetic characterization of aptamer–analyte interaction and aptamer folding, employing the thrombin-binding aptamer (TBA) as a model system. Thrombin-binding aptamer folding into a G-quadruplex and its binding to thrombin strongly depend on the type and concentration of ions present in solution. We observed conformational changes induced by cations in real-time and determined the folding and unfolding kinetics of the aptamer. The aptamer’s affinity for K+ was found to be more than one order of magnitude higher than for other cations (K+ > NH4+ >> Na+ > Li+). The aptamer’s affinity to its protein target thrombin in the presence of different cations followed the same trend but differed by more than three orders of magnitude (KD = 0.15 nM to 250 nM). While the stability (kOFF) of the thrombin–TBA complex was similar in all conditions, the cation type strongly influenced the association rate (kON). These results demonstrated that protein–aptamer binding is intrinsically related to the correct aptamer fold and, hence, to the presence of stabilizing ions. Because fast binding kinetics with on-rates exceeding 108 M−1s−1 can be quantified, and folding-related phenomena can be directly resolved, switchSENSE is a useful analytical tool for in-depth characterization of aptamer–ion and aptamer–protein interactions.


Sign in / Sign up

Export Citation Format

Share Document