TOWARDS AN EXPRESSION SYSTEM FOR SITE-DIRECTED MUTAGENESIS STUDIES OF XANTHINE DEHYDROGENASE (Drosophila melanogaster rosy GENE)

1991 ◽  
pp. 707-710
Author(s):  
R.C. Bray ◽  
R.K. Hughes ◽  
W.A. Doyle ◽  
J.R.S. Whittle ◽  
J.F. Burke
1995 ◽  
Vol 307 (2) ◽  
pp. 493-498 ◽  
Author(s):  
C Huang ◽  
H H Tai

A cDNA encoding for mouse prostaglandin E2 (PGE2) receptor EP3 subtype was cloned from a mouse kidney cDNA library by PCR using terminal primers derived from the known sequence of mouse lung EP3 receptor cDNA. The cloned cDNA was confirmed by sequencing and was expressed in Trichoplusia ni (MG1) insect cells using a baculovirus expression system. A specific protein of 60 kDa was detected by immunoblot with antibodies generated against a unique decapeptide sequence present in the second extracellular loop of the EP3 receptor. Specific binding of [3H]PGE2 with a Kd of 3 nM was also found in the membrane fraction of the insect cells. Ligand binding of the receptor was further studied by site-directed mutagenesis. Arg-309 of the receptor was separately mutated to lysine, glutamate and valine. cDNAs of the wild-type and mutant EP3 receptors were respectively expressed and studied in MG1 insect cells. Binding studies indicated that both glutamate and valine mutant EP3 receptors had no binding of [3H]PGE2. On the contrary, the lysine mutant receptor exhibited an even tighter binding (Kd = 1.3 nM) than the wild-type EP3 receptor. Immunoblot studies indicated that these receptors were expressed in a comparable amount in MG1 insect cells. These results suggest that Arg-309 of EP3 receptor may be essential in ligand binding through ionic interaction.


Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 507-515 ◽  
Author(s):  
C Magoulas ◽  
L Bally-Cuif ◽  
A Loverre-Chyurlia ◽  
B Benkel ◽  
D Hickey

Abstract Expression of the alpha-amylase gene is highly repressed by dietary glucose in Drosophila melanogaster larvae. Here, we show that glucose repression is controlled by DNA sequences that are located upstream of the transcribed region. Recombinant gene constructions, in which the amylase promoter sequences were fused with the transcribed region of the Adh gene, were expressed in transgenic Drosophila larvae. The expression of ADH from the recombinant gene was shown to be subject to glucose repression. The function of potential regulatory cis-acting elements within the glucose responsive upstream region was examined by deletion analysis and by site-directed mutagenesis, coupled with expression assays in transformed larvae. The upstream deletion analysis showed that essential elements, both for overall activity and for glucose repression of the amylase gene, are located within a 109-bp region upstream of the transcription start site. Site-directed mutagenesis of these upstream sequences showed that the TATA motif, at position -31, and a novel 36-bp element, at position -109, were necessary for full activity of the amylase promoter. None of the introduced mutations resulted in loss of glucose responsiveness. These results indicate that glucose repression, in Drosophila, is mediated by transcriptional mechanisms that involve multiple, functionally redundant DNA elements.


1993 ◽  
Vol 295 (2) ◽  
pp. 457-461 ◽  
Author(s):  
Z Xia ◽  
R F Shen ◽  
S J Baek ◽  
H H Tai

cDNA coding for human placental thromboxane synthase (EC 5.3.99.5) was amplified by PCR from a human placental cDNA library and sequenced. This cDNA and a shorter cDNA isolated from a human lung cDNA library with a deletion of 163 bp near the 3′ end were expressed in Spodoptera frugiperda (Sf9) insect cells using a baculovirus expression system. The cDNA from human placenta was expressed as an active enzyme (60 kDa) with a specific activity higher than those reported from other cell types, whereas the shorter cDNA was expressed in an inactive form (52 kDa). The active recombinant enzyme appeared to be unglycosylated as the molecular mass and the enzyme activity were not altered in the presence of tunicamycin. Site-directed mutagenesis was performed to convert a cysteine at position 480 in thromboxane synthase to a serine. This cysteine is found to be highly conserved in related cytochrome P-450 enzymes. The mutant enzyme was found to be inactive, although Western blot, immunoprecipitation and SDS/PAGE analysis indicated that the mutant enzyme was expressed at a level comparable with the wild-type enzyme. These results suggest that Cys-480 is essential for the enzyme catalytic activity and that the short-form cDNA may be a non-functional transcript.


2003 ◽  
Vol 69 (7) ◽  
pp. 3777-3783 ◽  
Author(s):  
Christiane Szekat ◽  
Ralph W. Jack ◽  
Dirk Skutlarek ◽  
Harald Färber ◽  
Gabriele Bierbaum

ABSTRACT The lantibiotic (i.e., lanthionine-containing antibiotic) mersacidin is an antimicrobial peptide of 20 amino acids which is produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin inhibits bacterial cell wall biosynthesis by binding to the precursor molecule lipid II. The structural gene of mersacidin (mrsA) and the genes for the enzymes of the biosynthesis pathway, dedicated transporters, producer self-protection proteins, and regulatory factors are organized in a biosynthetic gene cluster. For site-directed mutagenesis of lantibiotics, the engineered genes must be expressed in an expression system that contains all of the factors necessary for biosynthesis, export, and producer self-protection. In order to express engineered mersacidin peptides, a system in which the engineered gene replaces the wild-type gene on the chromosome was constructed. To test the expression system, three mutants were constructed. In S16I mersacidin, the didehydroalanine residue (Dha) at position 16 was replaced with the Ile residue found in the closely related lantibiotic actagardine. S16I mersacidin was produced only in small amounts. The purified peptide had markedly reduced antimicrobial activity, indicating an essential role for Dha16 in biosynthesis and biological activity of mersacidin. Similarly, Glu17, which is thought to be an essential structure in mersacidin, was exchanged for alanine. E17A mersacidin was obtained in good yields but also showed markedly reduced activity, thus confirming the importance of the carboxylic acid function at position 17 in the biological activity of mersacidin. Finally, the exchange of an aromatic for an aliphatic hydrophobic residue at position 3 resulted in the mutant peptide F3L mersacidin; this peptide showed only moderately reduced activity.


1992 ◽  
Vol 287 (3) ◽  
pp. 943-949 ◽  
Author(s):  
K J Hofmann ◽  
E M Nutt ◽  
C T Dunwiddie

Antistasin (ATS) is a leech-derived 119-amino-acid protein which exhibits potent and highly selective inhibition of coagulation Factor Xa. It inhibits Factor Xa according to a common mechanism of serine-proteinase inhibitors in which a conformationally rigid substrate-like reactive site is presented to the enzyme. In this study a recombinant version of ATS was expressed and purified utilizing a yeast expression system in order to probe the reactive site P1 (Arg-34) and P1′ (Val-35) residues by site-directed mutagenesis. The results demonstrate the requirement for a positively charged residue in the P1 position of ATS, with an arginine residue preferred over a lysine, yielding K1 values of 61 pM and 1.28 nM respectively. Mutation of the P1 arginine residue to the non-polar amino acid leucine abolished its inhibitory potency toward Factor Xa. The role of the C-terminal domain of ATS, which shares significant amino acid sequence identity with the N-terminal domain, was investigated by creating a second reactive site in the corresponding position of the C-terminal domain. The inhibitory activity of this mutant demonstrated that the C-terminal domain of ATS is not folded into the proper conformation necessary to create a functional inhibitory domain.


1998 ◽  
Vol 336 (3) ◽  
pp. 675-680 ◽  
Author(s):  
Zhongheng TU ◽  
M. W. ANDERS

Glutamate–cysteine ligase (GLCL) catalyses the rate-limiting step in glutathione biosynthesis. To identify cysteine residues in GLCL that are involved in its activity, eight conserved cysteine residues in human GLCL catalytic subunit (hGLCLC) were replaced with glycine residues by PCR-based site-directed mutagenesis. Both recombinant hGLCLC and hGLCL holoenzyme were expressed and purified with a baculovirus expression system. The activity of purified hGLCL holoenzyme with the mutant hGLCLC-C553G was 110±12 µmol/h per mg of protein compared with 370±20 µmol/h per mg of protein for the wild-type. Holoenzymes with hGLCLC-C52G, -C248G, -C249G, -C295G, -C491G, -C501G or -C605G showed activities similar to the wild type. The Km values of hGLCL containing hGLCLC-C553G were slightly lower than those of the wild type, indicating that the replacement of cysteine-553 with Gly in hGLCLC did not significantly affect substrate binding by the enzyme. hGLCLC-C553G was more easily dissociated from hGLCLR than the wild-type hGLCLC. GLCL activity increased by 11% after hGLCLC-C553G was incubated with an equimolar amount of purified hGLCL regulatory subunit (hGLCLR) at room temperature for 30 min, but increased by 110% after wild-type hGLCLC was incubated with hGLCLR for 10 min. These results indicate that cysteine-553 in hGLCLC is involved in heterodimer formation between hGLCLC and hGLCLR.


2004 ◽  
Vol 378 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Attila FARKAS ◽  
Peter TOMPA ◽  
Éva SCHÁD ◽  
Rita SINKA ◽  
Gáspár JÉKELY ◽  
...  

Calpain B is one of the two calpain homologues in Drosophila melanogaster that are proteolytically active. We studied its activation by Ca2+ both in vitro and in vivo, in Schneider (S2) cells. Activation involves the autolytic cleavage, at two major sites, of the N-terminal segment, the length of which was earlier underestimated. Site-directed mutagenesis at the autolytic sites did not prevent autolysis, but only shifted its sites. Calpain B mRNA was detectable in all developmental stages of the fly. In situ hybridization and immunostaining showed expression in ovaries, embryo and larvae, with high abundance in larval salivary glands. In S2 cells, calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes.


2002 ◽  
Vol 362 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Benjamin ADAMS ◽  
David J. LOWE ◽  
Andrew T. SMITH ◽  
Claudio SCAZZOCCHIO ◽  
Stephane DEMAIS ◽  
...  

Recent crystal structures of xanthine dehydrogenase, xanthine oxidase and related enzymes have paved the way for a detailed structural and functional analysis of these enzymes. One problem encountered when working with these proteins, especially with recombinant protein, is that the preparations tend to be heterogeneous, with only a fraction of the enzyme molecules being active. This is due to the incompleteness of post-translational modification, which for this protein is a complex, and incompletely understood, process involving incorporation of the Mo and Fe/S centres. The enzyme has been expressed previously in both Drosophila and insect cells using baculovirus. The insect cell system has been exploited by Iwasaki et al. [Iwasaki, Okamoto, Nishino, Mizushima and Hori (2000) J. Biochem (Tokyo) 127, 771–778], but, for the rat enzyme, yields a complex mixture of enzyme forms, containing around 10% of functional enzyme. The expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans is described. The purified protein has been analysed both functionally and spectroscopically. Its specific activity is indistinguishable from that of the enzyme purified from fruit flies [Doyle, Burke, Chovnick, Dutton, Whittle and Bray (1996) Eur. J. Biochem. 239, 782–795], and it appears to be more active than recombinant xanthine dehydrogenase produced with the baculovirus system. EPR spectra of the recombinant Drosophila enzyme are reported, including parameters for the Fe/S centres. Only a very weak ‘Fe/SIII’ signal (g1,2,3, 2.057, 1.930, 1.858) was observed, in contrast to the strong analogous signal reported for the enzyme from baculovirus. Since this signal appears to be associated with incomplete post-translational modification, this is consistent with relatively more complete cofactor incorporation in the Aspergillus-produced enzyme. Thus we have developed a recombinant expression system for D. melanogaster xanthine dehydrogenase, which can be used for the production of site-specific mutations of this enzyme.


Sign in / Sign up

Export Citation Format

Share Document