scholarly journals Spatial Distribution of Salinity and Sodicity in Arid Climate Following Long Term Brackish Water Drip Irrigated Olive Orchard

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2556 ◽  
Author(s):  
John Rohit Katuri ◽  
Pavel Trifonov ◽  
Gilboa Arye

The availability of brackish groundwater in the Negev Desert, Israel has motivated the cultivation of various salinity tolerant crops, such as olives trees. The long term suitability of surface drip irrigation (DI) or subsurface drip irrigation (SDI) in arid regions is questionable, due to salinity concerns, in particular, when brackish irrigation water is employed. Nevertheless, DI and SDI have been adopted as the main irrigation methods in olive orchards, located in the Negev Desert. Reports on continued reduction in olive yields and, essentially, olive orchard uprooting are the motivation for this study. Specifically, the main objective is to quantify the spatial distribution of salinity and sodicity in the active root-zone of olive orchards, irrigated with brackish water (electrical conductivity; EC = 4.4 dS m−1) for two decades using DI and subsequently SDI. Sum 246 soil samples, representing 2 m2 area and depths of 60 cm, in line and perpendicular to the drip line, were analyzed for salinity and sodicity quantities. A relatively small leaching-zone was observed below the emitters depth (20 cm), with EC values similar to the irrigation water. However, high to extreme EC values were observed between nearby emitters, above and below the dripline. Specifically, in line with the dripline, EC values ranged from 10 to 40 dS m−1 and perpendicular to it, from 40 to 120 dS m−1. The spatial distribution of sodicity quantities, namely, the sodium adsorption ratio (SAR, (meq L−1)0.5) and exchangeable sodium percentage (ESP) resembled the one obtained for the EC. In line with the dripline, from 15 to 30 (meq L−1)0.5 and up to 27%, in perpendicular to the drip line from 30 to 60 (meq L−l)0.5 and up to 33%. This study demonstrates the importance of long terms sustainable irrigation regime in arid regions in particular under DI or SDI. Reclamation of these soils with gypsum, for example, is essential. Any alternative practices, such as replacing olive trees and the further introduction of even high salinity tolerant plants (e.g., jojoba) in this region will intensify the salt buildup without leaving any option for soil reclamation in the future.

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1548 ◽  
Author(s):  
Chenchen Wei ◽  
Fahu Li ◽  
Peiling Yang ◽  
Shumei Ren ◽  
Shuaijie Wang ◽  
...  

Brackish water has been widely used to irrigate crops to compensate for insufficient freshwater water supply for agricultural use. The goal of this research was to determine an efficient brackish water use method to increase irrigation efficiency and reduce N2O emission. To this end, we conducted a field experiment with four salinity levels of irrigation water (1.1, 2.0, 3.5, and 5.0 g·L−1 with drip irrigation) at Hetao Irrigation District (Inner Mongolia, China) in 2017 and 2018. The results show that irrigation with 3.5–5.0 g·L−1 water salinity increased the soil salinity compared with irrigation using 1.1–2.0 g·L−1 water salinity. The soil water content with 5.0 g·L−1 brackish water irrigation was significantly higher than with 1.1–3.5 g·L−1 water salinity due to the effect of salinity on crop water uptake. The overall soil pH increased with the increase in irrigation water salinity. Saturated soil hydraulic conductivity decreased with the increase in irrigation water salinity. These results indicate that brackish water irrigation aggravates the degree of soil salinization and alkalization. The soil N2O cumulative flux resulting from irrigation with 5.0 g·L−1 water salinity was 51.18–82.86% higher than that resulting from 1.1–3.5 g L−1 water salinity in 2017, and was 32.38–44.79% higher than that resulting from 1.1–2.0 g·L−1 in 2018. Irrigation with brackish water reduced maize yield, and the reduction in yield in 2018 was greater than that in 2017, but irrigation with 2.0 g·L−1 brackish water did not significantly reduce maize yield in 2017. These results suggest that reducing the salinity of irrigation water may effectively reduce soil N2O emission, alleviate the degree of soil salinization, and increase crop yield.


1981 ◽  
Vol 10 (8) ◽  
pp. 393-396 ◽  
Author(s):  
A Issar

A well-developed system of harvesting the scanty rainfall of the Negev desert in run-off channels enabled farmers 1500 years ago to grow crops of grain and fruit, and produce oil and wine. Restoration of some of these early systems has shown that the principles hold good today and may be applicable in arid and semi-arid areas of other countries, particularly if they are used in combination with modern techniques such as drip irrigation and the use of brackish water.


2021 ◽  
Author(s):  
Yaran Bi ◽  
Linlin Wang ◽  
Wenyong Wu ◽  
Renkuan Liao ◽  
xiangshuai Bi ◽  
...  

Abstract Quantifying the spatial distribution of nitrogen (N) in the soil under long-term drip fertigation events is essential for the optimal regulation of drip fertigation systems. In this study, a greenhouse soil that has been under drip irrigation for 20 years was selected as the research object, and soil samples were collected from 0-50 cm soil depth. The concentrations of N in soil samples were measured and their spatial distribution characteristics were quantified by classical statistical analysis and multifractal analysis. The results showed that long-term drip fertigation and the influence of natural factors resulted in the nitrate N mainly accumulating in the shallow layer of the soil and within a distance from the drip irrigation belt, and the spatial heterogeneity gradually decreased with increasing depth. The content of ammonium N was low and its distribution was observed in the whole section. Multifractal analysis indicated that the Δα value of nitrate N and inorganic N gradually increased with the increase of research scale, i.e., the spatial heterogeneity gradually increased, and it did not appreciably change for ammonium N. Meanwhile, the local high value region was the main factor leading to the spatial heterogeneity of N, and this dominant effect gradually increased with increasing depth. Multifractal analysis can effectively reflect the local information of N spatial distribution in the soil and provide a more detailed description of the spatial heterogeneity of soil properties.


Author(s):  
Rumiana Kireva ◽  
Roumen Gadjev

The deficit of the irrigation water requires irrigation technologies with more efficient water use. For cucumbers, the most suitable is the drip irrigation technology. For establishing of the appropriate irrigation schedule of cucumbers under the soil and climate conditions in the village of Chelopechene, near Sofia city, the researchеs was conducted with drip irrigation technology, adopting varying irrigation schedules and hydraulic regimes - from fully meeting the daily crops water requirements cucumbers to reduced depths with 20% and 40%. It have been established irrigation schedule with adequate pressure flows in the water source, irrigation water productivity and yields of in plastic unheated greenhouses of the Sofia plant.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Leena Malayil ◽  
Suhana Chattopadhyay ◽  
Emmanuel F. Mongodin ◽  
Amy R. Sapkota

AbstractNontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2′-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Elsiddig Eldaw ◽  
Tao Huang ◽  
Adam Khalifa Mohamed ◽  
Yahaya Mahama

AbstractDeterioration of groundwater quality due to drastic human interventions is rising at an alarming rate particularly in lower- and middle-income countries. Yet, limited research effort has been devoted to monitoring and ascertaining groundwater quality. The present study develops a comprehensive irrigation water quality index (IWQI) for rating water quality of shallow and deep aquifers in North Kurdufan province, Sudan. The new approach is developed to overcome the deficiencies of the existing irrigation indices and coming up with a unified decision for classifying water quality for irrigation purposes. Because of these indices like permeability index (PI), sodium absorption ratio (SAR), etc., depending on specific elements, entirely subjective, as well as the great variations in their results, particularly when classifying water quality. Thus, IWQI is created based on eight indices that are generally used to evaluate irrigation water quality, plus three physicochemical parameters have been proven an impact on water quality. The analytic hierarchy process (AHP) is applied to minimize the subjectivity at assign parameter weights under multiple criteria decision analysis tools (MCDA). The spatial distribution of IWQI agrees with the spatial distribution of the most parameters. The results of our approach reveal that the majority of samples are suitable for irrigation uses for both aquifers except few wells in the confined aquifer. Also, noted that there are very variations in the irrigation indices results for classifying water quality. The comparison result showed that the new index robust, fair calculations and has best classifying of water quality.


2012 ◽  
Vol 36 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Steven P. Campbell ◽  
Jack W. Witham ◽  
Malcolm L. Hunter

Sign in / Sign up

Export Citation Format

Share Document