Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional p-Laplacian

2019 ◽  
Vol 12 (3) ◽  
pp. 253-275 ◽  
Author(s):  
Patrizia Pucci ◽  
Mingqi Xiang ◽  
Binlin Zhang

AbstractThe paper is concerned with existence of nonnegative solutions of a Schrödinger–Choquard–Kirchhoff-type fractional p-equation. As a consequence, the results can be applied to the special case(a+b\|u\|_{s}^{p(\theta-1)})[(-\Delta)^{s}_{p}u+V(x)|u|^{p-2}u]=\lambda f(x,u)% +\Bigg{(}\int_{\mathbb{R}^{N}}\frac{|u|^{p_{\mu,s}^{*}}}{|x-y|^{\mu}}\,dy% \Biggr{)}|u|^{p_{\mu,s}^{*}-2}u\quad\text{in }\mathbb{R}^{N},where\|u\|_{s}=\Bigg{(}\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}% \,dx\,dy+\int_{\mathbb{R}^{N}}V(x)|u|^{p}\,dx\Biggr{)}^{\frac{1}{p}},{a,b\in\mathbb{R}^{+}_{0}}, with {a+b>0}, {\lambda>0} is a parameter, {s\in(0,1)}, {N>ps}, {\theta\in[1,N/(N-ps))}, {(-\Delta)^{s}_{p}} is the fractional p-Laplacian, {V:\mathbb{R}^{N}\rightarrow\mathbb{R}^{+}} is a potential function, {0<\mu<N}, {p_{\mu,s}^{*}=(pN-p\mu/2)/(N-ps)} is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality, and {f:\mathbb{R}^{N}\times\mathbb{R}\rightarrow\mathbb{R}} is a Carathéodory function. First, via the Mountain Pass theorem, existence of nonnegative solutions is obtained when f satisfies superlinear growth conditions and λ is large enough. Then, via the Ekeland variational principle, existence of nonnegative solutions is investigated when f is sublinear at infinity and λ is small enough. More intriguingly, the paper covers a novel feature of Kirchhoff problems, which is the fact that the parameter a can be zero. Hence the results of the paper are new even for the standard stationary Kirchhoff problems.

Author(s):  
Jenica Cringanu

The purpose of this paper is to show the existence results for the following abstract equation Jpu = Nfu,where Jp is the duality application on a real reflexive and smooth X Banach space, that corresponds to the gauge function φ(t) = tp-1, 1 < p < ∞. We assume that X is compactly imbedded in Lq(Ω), where Ω is a bounded domain in RN, N ≥ 2, 1 < q < p∗, p∗ is the Sobolev conjugate exponent.Nf : Lq(Ω) → Lq′(Ω), 1/q + 1/q′ = 1, is the Nemytskii operator that Caratheodory function generated by a f : Ω × R → R which satisfies some growth conditions. We use topological methods (via Leray-Schauder degree), critical points methods (the Mountain Pass theorem) and a direct variational method to prove the existence of the solutions for the equation Jpu = Nfu.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250021 ◽  
Author(s):  
FRANCISCO ODAIR DE PAIVA

This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem [Formula: see text] where Ω is a bounded domain of ℝN, λ ∈ ℝ and g(x, u) is a Carathéodory function. The obtained results apply to the following classes of nonlinearities: a(x)uq + b(x)up and c(x)(1 + u)p (0 ≤ q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.


2006 ◽  
Vol 74 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Mihai Mihailescu

In this paper we study a nonlinear elliptic equation involving p(x)-growth conditions on a bounded domain having cylindrical symmetry. We establish existence and multiplicity results using as main tools the mountain pass theorem of Ambosetti and Rabinowitz and Ekeland's variational principle.


Author(s):  
Mingqi Xiang ◽  
Binlin Zhang ◽  
Massimiliano Ferrara

In this paper, we are interested in the multiplicity of solutions for a non-homogeneous p -Kirchhoff-type problem driven by a non-local integro-differential operator. As a particular case, we deal with the following elliptic problem of Kirchhoff type with convex–concave nonlinearities: a + b ∬ R 2 N | u ( x ) − u ( y ) | p | x − y | N + s p   d x   d y θ − 1 ( − Δ ) p s u = λ ω 1 ( x ) | u | q − 2 u + ω 2 ( x ) | u | r − 2 u + h ( x ) in   R N , where ( − Δ ) p s is the fractional p -Laplace operator, a + b >0 with a , b ∈ R 0 + , λ>0 is a real parameter, 0 < s < 1 < p < ∞ with sp < N , 1< q < p ≤ θp < r < Np /( N − sp ), ω 1 , ω 2 , h are functions which may change sign in R N . Under some suitable conditions, we obtain the existence of two non-trivial entire solutions by applying the mountain pass theorem and Ekeland's variational principle. A distinguished feature of this paper is that a may be zero, which means that the above-mentioned problem is degenerate. To the best of our knowledge, our results are new even in the Laplacian case.


2014 ◽  
Vol 33 (2) ◽  
pp. 187-201
Author(s):  
Abdesslem Ayoujil ◽  
Mimoun Moussaoui

In this paper, a transmission problem given by a system of two nonlinear equations of p(x)-Kirchho type with nonstandard growth conditions are studied. Using the mountain pass theorem combined with the Ekeland's variational principle, we obtain at least two distinct, non-trivial weak solutions.


2017 ◽  
Vol 8 (3) ◽  
Author(s):  
EL Miloud Hssini ◽  
Najib Tsouli ◽  
Mustapha Haddaoui

AbstractIn this paper, based on the mountain pass theorem and Ekeland’s variational principle, we show the existence of solutions for a class of non-homogeneous and nonlocal problems in Orlicz–Sobolev spaces.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Aboubacar Marcos ◽  
Aboubacar Abdou

Abstract We obtain multiplicity and uniqueness results in the weak sense for the following nonhomogeneous quasilinear equation involving the $p(x)$ p ( x ) -Laplacian operator with Dirichlet boundary condition: $$ -\Delta _{p(x)}u+V(x) \vert u \vert ^{q(x)-2}u =f(x,u)\quad \text{in }\varOmega , u=0 \text{ on }\partial \varOmega , $$ − Δ p ( x ) u + V ( x ) | u | q ( x ) − 2 u = f ( x , u ) in  Ω , u = 0  on  ∂ Ω , where Ω is a smooth bounded domain in $\mathbb{R}^{N}$ R N , V is a given function with an indefinite sign in a suitable variable exponent Lebesgue space, $f(x,t)$ f ( x , t ) is a Carathéodory function satisfying some growth conditions. Depending on the assumptions, the solutions set may consist of a bounded infinite sequence of solutions or a unique one. Our technique is based on a symmetric version of the mountain pass theorem.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imran Talib ◽  
Thabet Abdeljawad

Abstract Our main concern in this article is to investigate the existence of solution for the boundary-value problem $$\begin{aligned}& (\phi \bigl(x'(t)\bigr)'=g_{1} \bigl(t,x(t),x'(t)\bigr),\quad \forall t\in [0,1], \\& \Upsilon _{1}\bigl(x(0),x(1),x'(0)\bigr)=0, \\& \Upsilon _{2}\bigl(x(0),x(1),x'(1)\bigr)=0, \end{aligned}$$ ( ϕ ( x ′ ( t ) ) ′ = g 1 ( t , x ( t ) , x ′ ( t ) ) , ∀ t ∈ [ 0 , 1 ] , ϒ 1 ( x ( 0 ) , x ( 1 ) , x ′ ( 0 ) ) = 0 , ϒ 2 ( x ( 0 ) , x ( 1 ) , x ′ ( 1 ) ) = 0 , where $g_{1}:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}$ g 1 : [ 0 , 1 ] × R 2 → R is an $L^{1}$ L 1 -Carathéodory function, $\Upsilon _{i}:\mathbb{R}^{3}\rightarrow \mathbb{R} $ ϒ i : R 3 → R are continuous functions, $i=1,2$ i = 1 , 2 , and $\phi :(-a,a)\rightarrow \mathbb{R}$ ϕ : ( − a , a ) → R is an increasing homeomorphism such that $\phi (0)=0$ ϕ ( 0 ) = 0 , for $0< a< \infty $ 0 < a < ∞ . We obtain the solvability results by imposing some new conditions on the boundary functions. The new conditions allow us to ensure the existence of at least one solution in the sector defined by well ordered functions. These ordered functions do not require one to check the definitions of lower and upper solutions. Moreover, the monotonicity assumptions on the arguments of boundary functions are not required in our case. An application is considered to ensure the applicability of our results.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 334
Author(s):  
Enes Kacapor ◽  
Teodor M. Atanackovic ◽  
Cemal Dolicanin

We study optimal shape of an inverted elastic column with concentrated force at the end and in the gravitational field. We generalize earlier results on this problem in two directions. First we prove a theorem on the bifurcation of nonlinear equilibrium equations for arbitrary cross-section column. Secondly we determine the cross-sectional area for the compressed column in the optimal way. Variational principle is constructed for the equations determining the optimal shape and two new first integrals are constructed that are used to check numerical integration. Next, we apply the Noether’s theorem and determine transformation groups that leave variational principle Gauge invariant. The classical Lagrange problem follows as a special case. Several numerical examples are presented.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Shapour Heidarkhani ◽  
Giuseppe Caristi ◽  
Ghasem A. Afrouzi ◽  
Shahin Moradi

Abstract Based on a variational principle for smooth functionals defined on reflexive Banach spaces, the existence of at least one weak solution for a non-homogeneous Neumann problem in an appropriate Orlicz–Sobolev space is discussed.


Sign in / Sign up

Export Citation Format

Share Document