Extension of the Andersén–Lempert theory: Lie algebras of zero divergence vector fields on complex affine algebraic varieties

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fabrizio Donzelli

AbstractFor a smooth manifold X equipped with a volume form, let 𝓛0 (X) be the Lie algebra of volume preserving smooth vector fields on X. Lichnerowicz proved that the abelianization of 𝓛0 (X) is a finite-dimensional vector space, and that its dimension depends only on the topology of X. In this paper we provide analogous results for some classical examples of non-singular complex affine algebraic varieties with trivial canonical bundle, which include certain algebraic surfaces and linear algebraic groups. The proofs are based on a remarkable result of Grothendieck on the cohomology of affine varieties, and some techniques that were introduced with the purpose of extending the Andersén–Lempert theory, which was originally developed for the complex spaces ℂn, to the larger class of Stein manifolds that satisfy the density property.

2020 ◽  
Vol Volume 4 ◽  
Author(s):  
Frank Grosshans ◽  
Hanspeter Kraft

Let $k$ be an algebraically closed field of characteristic 0, and let $V$ be a finite-dimensional vector space. Let $End(V)$ be the semigroup of all polynomial endomorphisms of $V$. Let $E$ be a subset of $End(V)$ which is a linear subspace and also a semi-subgroup. Both $End(V)$ and $E$ are ind-varieties which act on $V$ in the obvious way. In this paper, we study important aspects of such actions. We assign to $E$ a linear subspace $D_{E}$ of the vector fields on $V$. A subvariety $X$ of $V$ is said to $D_{E}$ -invariant if $h(x)$ is in the tangent space of $x$ for all $h$ in $D_{E}$ and $x$ in $X$. We show that $X$ is $D_{E}$ -invariant if and only if it is the union of $E$-orbits. For such $X$, we define first integrals and construct a quotient space for the $E$-action. An important case occurs when $G$ is an algebraic subgroup of $GL(V$) and $E$ consists of the $G$-equivariant polynomial endomorphisms. In this case, the associated $D_{E}$ is the space the $G$-invariant vector fields. A significant question here is whether there are non-constant $G$-invariant first integrals on $X$. As examples, we study the adjoint representation, orbit closures of highest weight vectors, and representations of the additive group. We also look at finite-dimensional irreducible representations of SL2 and its nullcone.


1985 ◽  
Vol 28 (3) ◽  
pp. 1005 ◽  
Author(s):  
A. Thyagaraja ◽  
F. A. Haas

1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1970 ◽  
Vol 22 (2) ◽  
pp. 363-371 ◽  
Author(s):  
K. Singh

In this paper, we shall construct a vector space, called the (G, σ) space, which generalizes the tensor space, the Grassman space, and the symmetric space. Then we shall determine a necessary and sufficient condition that the (G, σ) product of the vectors x1, x2, …, xn is zero.1. Let G be a permutation group on I = {1, 2, …, n} and F, an arbitrary field. Let σ be a linear character of G, i.e., σ is a homomorphism of G into the multiplicative group F* of F.For each i ∈ I, let Vi be a finite-dimensional vector space over F. Consider the Cartesian product W = V1 × V2 × … × Vn.1.1. Definition. W is called a G-set if and only if Vi = Vg(i) for all i ∊ I, and for all g ∊ G.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


2020 ◽  
Vol 31 (03) ◽  
pp. 2050018
Author(s):  
Shulim Kaliman ◽  
Frank Kutzschebauch ◽  
Matthias Leuenberger

Let [Formula: see text] be the subgroup of the group [Formula: see text] of holomorphic automorphisms of a normal affine algebraic surface [Formula: see text] generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces [Formula: see text] quasi-homogeneous under [Formula: see text] in terms of the dual graphs of the boundaries [Formula: see text] of their SNC-completions [Formula: see text].


1974 ◽  
Vol 55 ◽  
pp. 91-110 ◽  
Author(s):  
Akira Koriyama

It is known (Pursell and Shanks [9]) that an isomorphism between Lie algebras of infinitesimal automorphisms of C∞ structures with compact support on manifolds M and M′ yields an isomorphism between C∞ structures of M and M’.Omori [5] proved that this is still true for some other structures on manifolds. More precisely, let M and M′ be Hausdorff and finite dimensional manifolds without boundary. Let α be one of the following structures:


1995 ◽  
Vol 138 ◽  
pp. 113-140 ◽  
Author(s):  
E. De Negri ◽  
G. Valla

Let k be an infinite field and A a standard G-algebra. This means that there exists a positive integer n such that A = R/I where R is the polynomial ring R := k[Xv …, Xn] and I is an homogeneous ideal of R. Thus the additive group of A has a direct sum decomposition A = ⊕ At where AiAj ⊆ Ai+j. Hence, for every t ≥ 0, At is a finite-dimensional vector space over k. The Hilbert Function of A is defined by


Sign in / Sign up

Export Citation Format

Share Document