scholarly journals Iron-Ore Sintering Process Optimization / Optymalizacja Procesu Aglomeracji Rudy Żelaza

2015 ◽  
Vol 60 (4) ◽  
pp. 2895-2900 ◽  
Author(s):  
M. Fröhlichová ◽  
D. Ivanišin ◽  
A. Mašlejová ◽  
R. Findorák ◽  
J. Legemza

The work deals with examination of the influence of the ratio between iron ore concentrate and iron ore on quality of produced iron ore sinter. One of the possibilities to increase iron content in sinter is the modification of raw materials ratio, when iron ore materials are added into sintering mixture. If the ratio is in favor of iron ore sinter, iron content in resulting sintering mixture will be lower. If the ratio is in favor of iron ore concentrate and recycled materials, which is more finegrained, a proportion of a fraction under 0.5 mm will increase, charge permeability property will be reduced, sintering band performance will decrease and an occurrence of solid particulate matter in product of sintering process will rise. The sintering mixture permeability can be optimized by increase of fuel content in charge or increase of sinter charge moisture. A change in ratio between concentrate and iron ore has been experimentally studied. An influence of sintering mixture grain size composition, a charge grains shape on quality and phase composition on quality of the produced iron sinter has been studied.

2020 ◽  
Vol 844 ◽  
pp. 114-123
Author(s):  
Volodymyr Bochka ◽  
Artem Sova ◽  
Lina Kieush ◽  
Oleksandr Hryshyn ◽  
Alisa Dvoiehlazova

This paper reveals that obtaining high-quality sinter, improved or stabilized by its size and strength, is a challenge to be solved by embracing both the formation of sinter with the strong structure and the optimal mineralogical composition of its bonds during the preparation of the sintering blend. The existing technological schemes of iron ore sintering do not allow producing the sinter where the amounts of fines with 0-0.5 mm of fraction would be less than the typical amounts of 8.1-20.4%. Therefore, the study to establish how the blend preparation with the preliminary made composites affects the parameters of iron ore sintering process and the quality of the resulting sinter has been carried out. It has determined that the use of separate pre-granulation has commonly positive effects on the process of blend preparation, namely it significantly decreases the amount of non-granulated fraction of 0-1 mm and increases the equivalent diameter of the granules, reduces the standard deviation and variation coefficient, indicating the more homogeneous granulometric composition of raw granules.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Junwoo Park ◽  
Eunju Kim ◽  
In-kook Suh ◽  
Joonho Lee

The sintering process is a thermal agglomeration process, and it is accompanied by chemical reactions. In this process, a mixture of iron ore fines, flux, and coal particles is heated to about 1300 °C–1480 °C in a sinter bed. The strength and reducibility properties of iron ore sinter are obtained by liquid phase sintering. The silico-ferrite of calcium and aluminum (SFCA) is the main bonding phase found in modern iron ore sinters. Since the physicochemical and crystallographic properties of the SFCA are affected by the chemical composition and mineral phases of iron ores, a crystallographic understanding of iron ores and sintered ore is important to enhance the quality of iron ore sinter. Scrap and by-products from steel mills are expected to be used in the iron ore sintering process as recyclable resources, and in such a case, the crystallographic properties of iron ore sinter will be affected using these materials. The objective of this paper is to present a short review on research related to mineral phases and structural properties of iron ore and sintered ore.


Author(s):  
V. I. Nosenko ◽  
A. N. Filatov ◽  
G. A. Nechkin ◽  
V. A. Kobelev

To decrease viscosity of BF slag and improve its desulfurization ability during hot metal production a magnesia oxide is used, which is introduced into a blast furnace, as a rule, within iron ore sinter, as well as in the form of a fluxing additive. Dolomite, sometimes iron ore materials with increased magnesia content (for example, Kovdor concentrate, raw or roasted Bakal siderite) as well as magnesia-contained wastes, most often BOF slag, are usually used as a main source of magnesia oxide during iron ore sinter production. Brucite, which is widely used abroad, mainly in Japan during iron ore sinter production, is a very prospective magnesia flux. However, brucite was never used in sinter production in Russia. Main parameters and efficiency of its application were obtained under Japan raw materials conditions. However sinter chemical and mineral compositions at Russian and Japanese sinter plants considerably differ. In this connection studies on influence of the magnesia flux “Flumag M”, which is identical by its composition to brucite, on the process parameters of sinter burden sintering and pellets production were carried out. The estimation of application efficiency of “Flumag M” magnesia flux was made during typical sintering of NLMK sinter burden. It was determined, that partial and complete substitution of dolomite by the “Flumag M” magnesia flux in the NLMK sinter burden results in an increase of specific productivity of sintering process by 10–20% (comparative) and the sinter strength by 3–5% (comparative) correspondently. Laboratory experiments on “Flumag M” magnesia flux application, carried out in STI NITU “MISiS”, showed, that raw pellets with magnesia flux additives have higher compressive strength comparing with the pellets having dolomite additives. Impact strength and abrasion strength of roasted pellets is higher, comparing with those with dolomite. Optimal content of “Flumag M” flux in the pellets burden is 2%. The application of “Flumag M” magnesia flux enables to remove burden from the burden and increase strength of roasted pellets.


2017 ◽  
Vol 148 ◽  
pp. 12-22 ◽  
Author(s):  
Zhiyun Ji ◽  
Min Gan ◽  
Xiaohui Fan ◽  
Xuling Chen ◽  
Qiang Li ◽  
...  

Author(s):  
G. E. Isaenko ◽  
D. A. Kovalev ◽  
N. S. Meshcheryakov ◽  
V. G. Mikhailov ◽  
D. S. Kim

Effectiveness of blast furnaces operation in many respects depends on metallurgical properties of agglomerate, in particular, iron content in the sinter and its basicity. At the same time, it is accepted that usage of iron ore concentrates with iron content more than 66–67% for sinter production results in decreasing of its strength. As a result of the planned modernization of the technological sections of the concentration plant JSC “Stoilensky GOK”, iron content in the concentrate will be increased to 68–70%. It makes it actual to accomplish comprehensive studies of metallurgical properties of the sinter while increasing iron content in the raw material. Results of the study of sinter properties presented, the sinter being obtained with utilization of iron concentrate with iron content 66.6 % (base), 68.0 and 69.2 % (exp. 1 and exp. 2 correspondently). The iron ore mixture for all the stages was the same and consisted of iron ore concentrate – 78.3%, sintering ore – 8.0%, lime – 5.5% and sintering additives (sludge, dust, scale) – 8.2%. The sintering mixtures composition for all the study stages differed only by fluxes and iron ore mixture consumption. 18 test sintering operations at three values of basicity 1.6, 1.8 and 2.0 units were accomplished. It was established that increase of iron content in the concentrate and basicity of the sinter results in improving of the sintering process indices, increase of the vertical sintering rate, sintering machines productivity, recovery and the sinter cold strength. Increase of the sinter basicity and its production with increased content of iron results in improving RDI indices at low temperature reducing. Results of the study of porosity indices and metallurgical properties of the sinter presented, in particular the collapsibility during reducing and temperature interval softening-melting presented. The advisability of concentrate with increased iron content utilization in the iron ore mixture shown.


Author(s):  
I. S. Bersenev

The aim of the work was to study the peculiarities and mechanism of migration of the components during the sintering of the oxidized ferruginous quartzites concentrates. As a result, it was determined thatthe silicate vitreous bond (B2= 0,9–1,1; FeO = 17–23 %; SiO2= 35–40 %) concentrates alkaline metals in its structure, MgO = 0,3–6,0 %, Al2O3= 0,2–7,2 %. It was formed at the basis of silicate minerals of the concentrate waste rock. Ore phases contain as an isomorphic impurity MgO (up to 3.0 %), Al2O3(up to 1.0 %), CoO (up to 0.43 %). The flux and iron-containing components of the original raw materials were the sources of magnesium and aluminum, the iron ore concentrate, in which cobalt is a part of magnetite as an isomorphic admixture was the source of cobalt. Fundamental differences in the distribution of elements between the ore phases in the agglomeration of oxidized ferruginous quartzites and non-oxidized (magnetite) were absent, due to the comparable composition of the waste rock and the mechanism of formation and crystallization of the melt.


Sign in / Sign up

Export Citation Format

Share Document