scholarly journals Use of the Schlieren Method to the Convection Analysis in the Steel Charge of Mixed Porosity / Wykorzystanie Metody Schlierena Do Analizy Zjawiska Konwekcji W Przypadku Wsadu Stalowego O Porowatości Mieszanej

2015 ◽  
Vol 60 (4) ◽  
pp. 2949-2954
Author(s):  
R. Wyczółkowski ◽  
C. Kolmasiak ◽  
D. Urbaniak ◽  
T. Wyleciał

The paper presents experimental studies devoted to the convection phenomenon within the steel charge of mixed porosity. Such charges constitute bundles of hollow long elements such as pipes or rectangular sections which are heat treated. A significant portion of the gas phase in the volume of the charge makes that natural convection of the gas occurring within the individual elements may have an effect on the course of heating. To the tests the Schlieren method was used which is one of the optical visualization methods applied to the analysis of the flow phenomena in the transparent and non luminous media such as air or water. The tested samples have the form of porous charge beds made from pipes and rectangular profiles. During the experiments the samples were heating up for the constant heat flux rate. The direction of flux was vertical, from the bottom to the top.

2021 ◽  
Vol 9 (12) ◽  
pp. 686-695
Author(s):  
Waleed Abdulhadiethbayah ◽  

Many engineering and industrial applications always seek to find ways to dissipate heat from heated surfaces used in these industries. As it is involved in the cooling of electronic parts and electrical transformers, as well as the design of solar collectors, in addition to being a process of heat exchange between hot surfaces and the fluids in contact with them. Since most electronic devices or their parts are cooled by removing the heat generated inside them by using air as a heat transfer medium and in a free convection way, and the fact that heat transfer by free convection occurs in many fields, so there were many studies that dealt with this topic. The free load is generated by the buoyant force (Bouncy force) As a result of the difference in the density of the fluid adjacent to the heated surface due to the difference in temperatures between the fluid and the surface. The laminar flow along surfaces has been extensively studied analytically [1,2,3,4] In the horizontal, inclined and vertical case, whether by constant heat flux or constant surface temperature, there are also many experimental studies of heat transfer by free convection from horizontal, inclined and vertical surfaces with constant heat flux or constant surface temperature [5,6,7,8]. Some experimental studies have also been conducted on heat transfer by convection from heated surfaces in the form of a disk (ring)The outcome of these studies was to extract an exponential mathematical relationship between the average of Nusselt number and the Kirchhoff number or Rayleigh number and the following formula: (Nu=C(Ra) n It is one of the most suitable formulas for heat transfer by free convection from heated surfaces in all its forms and over a wide range of Rayleigh number . It is noted that not all of these studies dealt with the study of the effect of the cavity ratio on heat transfer by free convection from square-shaped surfaces, which is the form that is more applied in electronic devices. Therefore, the current research means studying the rate of change in the average of Nusselt number, which represents a function of the rate of change in the rate of heat transfer by convection, as well as studying the thermal gradient above the surface, and this was done through using three hollow surfaces in proportions (0.25,0.5,0.75) of the total area.


Arduous experimentations remain accomplished for exploring effects of nozzle to plate spacing on heat dispersal over flat plate concerning constant thermal value 6 W/cm2 . This paper presents the experimental studies on cooling behavior with water jet impingement. Several influencing parameters pertaining to cooling behaviors of striking jets got recognized for investigating impacts over heat transfer characteristics. The parameters taken into account are nozzle diameter (3, 4, 5 and 6 mm), Reynolds number (800, 1600, 2400 and 3200), nozzle to plate spacing (20, 25, 30 and 35 mm) and jet inclination (30⁰, 45⁰, 60⁰, 75⁰ and 90⁰). Additionally, the studies are limited to a constant heat flux situation. The chary interpretations of results tell that performance remains boosted with regard to these key parameters. However, for current experimental settings, nozzle to plate spacing of 25 mm delivers enough thermal credentials and is the exceptionally supreme.


Experimentations remain performed for examining influences of water jet impingement on heat dispersal over flat plate concerning constant thermal value 6 W/cm2 . This paper presents the experimental studies on cooling behavior with water jet impingement. Several influencing parameters pertaining to cooling behaviors of striking jets got recognized for investigating impacts over heat transfer characteristics. The parameters taken into account are nozzle diameter (3, 4, 5 and 6 mm), Reynolds number (800, 1600, 2400 and 3200), nozzle to plate spacing ratio (7, 6, 5 and 4) and jet inclination (30⁰, 45⁰, 60⁰, 75⁰ and 90⁰). Additionally, the studies are limited to a constant heat flux situation. The chary interpretations of results tell that performance remains boosted in connection with stated fundamental parameters.


Onerous experimentations stay continued for examining influences of jet inclination on heat dispersal over flat plate concerning constant thermal value 6 W/cm2 . This paper presents the experimental studies on cooling behavior with water jet impingement. Several influencing parameters pertaining to cooling behaviors of striking jets got recognized for investigating impacts over heat transfer characteristics. The parameters taken into account are nozzle diameter (3, 4, 5 and 6 mm), Reynolds number (800, 1600, 2400 and 3200), nozzle to plate spacing (20, 25, 30 and 35 mm) and jet inclination (30⁰, 45⁰, 60⁰, 75⁰ and 90⁰). Additionally, the studies are limited to a constant heat flux situation. The chary interpretations of results tell that performance remains boosted with regard to these key parameters. However, for present experimental settings, jet inclination of 60⁰ brings plenty cooling badges and is remarkably ultimate.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


Sign in / Sign up

Export Citation Format

Share Document