scholarly journals Computer modeling of hippocampal CA1 pyramidal cells - a tool for in silico experiments

2015 ◽  
Vol 61 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Júlia Metz ◽  
T. Szilágyi ◽  
M. Perian ◽  
K. Orbán-Kis

Abstract Objective. In silico experiments use mathematical models that capture as much as possible from the properties of the biological system under investigation. Our aim was to test the publicly available CA1 pyramidal cell models using the same simulation tasks, to compare them, and provide a systematic overview of their properties in order to improve the usefulness of these models as a tool for in silico experiments. Methods. Parameters describing the morphology of the cells and the implemented biophysical mechanisms were collected from the Model DB database of Sense Lab Project. This data was analyzed in correlation with the purpose for which each particular model was developed. Multicompartmental simulations were run using the Neuron modeling platform. The properties of the action potentials generated in response to current injection, the firing pattern and the dendritic back-propagation were analyzed. Results. The studied models were optimized to explore different physiological and pathological properties of the CA1 pyramidal cells. We could identify four broad classes of models focusing on: (i) initiation of the action potential, firing pattern and spike timing, (ii) dendritic backpropagation, (iii) dendritic integration of synaptic inputs and (iv) neuronal network activity. Despite the large variation of the active conductances implemented in the models, the properties of the individual action potentials were quite similar, but even the most complex models could not reproduce all studied biological phenomena. Conclusions. At the moment the “perfect” pyramidal cell model is not yet available. Our work, hopefully, will help finding the best model for each scientific question under investigation.

2006 ◽  
Vol 96 (5) ◽  
pp. 2307-2318 ◽  
Author(s):  
Clifton C. Rumsey ◽  
L. F. Abbott

Given the extensive attenuation that can occur along dendritic cables, location within the dendritic tree might appear to be a dominant factor in determining the impact of a synapse on the postsynaptic response. By this reasoning, distal synapses should have a smaller effect than proximal ones. However, experimental evidence from several types of neurons, such as CA1 pyramidal cells, indicates that a compensatory strengthening of synapses counteracts the effect of location on synaptic efficacy. A form of spike-timing-dependent plasticity (STDP), called anti-STDP, combined with non-Hebbian activity-dependent plasticity can account for the equalization of synaptic efficacies. This result, obtained originally in models with unbranched passive cables, also arises in multi-compartment models with branched and active dendrites that feature backpropagating action potentials, including models with CA1 pyramidal morphologies. Additionally, when dendrites support the local generation of action potentials, anti-STDP prevents runaway dendritic spiking and locally balances the numbers of dendritic and backpropagating action potentials. Thus in multiple ways, anti-STDP eliminates the location dependence of synapses and allows Hebbian plasticity to operate in a more “democratic” manner.


1983 ◽  
Vol 50 (5) ◽  
pp. 1197-1219 ◽  
Author(s):  
T. W. Berger ◽  
P. C. Rinaldi ◽  
D. J. Weisz ◽  
R. F. Thompson

Extracellular single-unit recordings from neurons in the CA1 and CA3 regions of the dorsal hippocampus were monitored during classical conditioning of the rabbit nictitating membrane response. Neurons were classified as different cell types using response to fornix stimulation (i.e., antidromic or orthodromic activation) and spontaneous firing characteristics as criteria. Results showed that hippocampal pyramidal neurons exhibit learning-related neural plasticity that develops gradually over the course of classical conditioning. The learning-dependent pyramidal cell response is characterized by an increase in frequency of firing within conditioning trials and a within-trial pattern of discharge that correlates strongly with amplitude-time course of the behavioral response. In contrast, pyramidal cell activity recorded from control animals given unpaired presentations of the conditioned and unconditioned stimulus (CS and UCS) does not show enhanced discharge rates with repeated stimulation. Previous studies of hippocampal cellular electrophysiology have described what has been termed a theta-cell (19-21, 45), the activity of which correlates with slow-wave theta rhythm generated in the hippocampus. Neurons classified as theta-cells in the present study exhibit responses during conditioning that are distinctly different than pyramidal cells. theta-Cells respond during paired conditioning trials with a rhythmic bursting; the between-burst interval occurs at or near 8 Hz. In addition, two different types of theta-cells were distinguishable. One type of theta-cell increases firing frequency above pretrial levels while displaying the theta bursting pattern. The other type decreases firing frequency below pretrial rates while showing a theta-locked discharge. In addition to pyramidal and theta-neurons, several other cell types recorded in or near the pyramidal cell layer could be distinguished. One cell type was distinctive in that it could be activated with a short, invariant latency following fornix stimulation, but spontaneous action potentials of such neurons could not be collided with fornix shock-induced action potentials. These neurons exhibit a different profile of spontaneous firing characteristics than those of antidromically identified pyramidal cells. Nevertheless, neurons in this noncollidable category display the same learning-dependent response as pyramidal cells. It is suggested that the noncollidable neurons represent a subpopulation of pyramidal cells that do not project an axon via the fornix but project, instead, to other limbic cortical regions.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 87 (3) ◽  
pp. 1655-1658 ◽  
Author(s):  
Bret N. Smith ◽  
F. Edward Dudek

Axon sprouting and synaptic reorganization in the hippocampus are associated with the development of seizures in temporal lobe epilepsy. Synaptic interactions among CA1 pyramidal cells were examined in fragments of hippocampal slices containing only the CA1 area from saline- and kainate-treated rats. Glutamate microapplication to the pyramidal cell layer increased excitatory postsynaptic current (EPSC) frequency, but only in rats with kainate-induced epilepsy. In bicuculline, action potentials evoked in single pyramidal cells increased the frequency of network bursts only in slices from rats with kainate-induced epilepsy. These data further support the hypothesis that excitatory connections between CA1 pyramidal cells increase after kainate-induced status epilepticus.


2007 ◽  
Vol 98 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Jay Spampanato ◽  
Istvan Mody

Network activity in the 200- to 600-Hz range termed high-frequency oscillations (HFOs) has been detected in epileptic tissue from both humans and rodents and may underlie the mechanism of epileptogenesis in experimental rodent models. Slower network oscillations including theta and gamma oscillations as well as ripples are generated by the complex spike timing and interactions between interneurons and pyramidal cells of the hippocampus. We determined the activity of CA3 pyramidal cells, stratum oriens lacunosum-moleculare (O-LM) and s. radiatum lacunosum-moleculare (R-LM) interneurons during HFO in the in vitro low-Mg2+ model of epileptiform activity in GIN mice. In these animals, interneurons can be identified prior to cell-attached recordings by the expression of green-fluorescent protein (GFP). Simultaneous local field potential recordings from s. pyramidale and on-cell recordings of individual interneurons and principal cells revealed three primary firing behaviors of the active cells: 36% of O-LM interneurons and 60% of pyramidal cells fired action potentials at high frequencies during the HFO. R-LM interneurons were biphasic in that they fired at high frequency at the beginning of the HFO but stopped firing before its end. When considering only the highest frequency component of the oscillations most pyramidal cells fired on the rising phase of the oscillation. These data provide evidence for functional distinction during HFOs within otherwise homogeneous groups of O-LM interneurons and pyramidal cells.


1984 ◽  
Vol 52 (1) ◽  
pp. 126-142 ◽  
Author(s):  
C. P. Taylor ◽  
F. E. Dudek

The effects of electrical fields from antidromic stimulation of CA1 pyramidal cells were studied in slices of rat hippocampus in which chemical synaptic transmission had been blocked by superfusion with physiological solution containing Mn2+ and lowered concentration of Ca2+. Differential voltage recordings were made between two microelectrode positions, on intracellular to a pyramidal cell and the other in the adjacent extracellular space. This technique revealed brief transmembrane depolarizations that occurred synchronously with negative-going extracellular population spikes in the adjacent cell body layer. Glial cells in this region did not exhibit these depolarizations. In some pyramidal cells, alvear stimulation that was too weak to excite the axon of the impaled cell elicited action potentials, which appeared to arise from transmembrane depolarizations at the soma. When subthreshold transmembrane depolarizations were superimposed on subthreshold depolarizing current pulses, somatic action potentials were generated synchronously with the antidromic population spikes. The depolarizations of pyramidal somata were finely graded with stimulus intensity, were unaffected by polarization of the membrane, and were not occluded by preceding action potentials. The laminar profile of extracellular field potentials perpendicular to the cell body layer was obtained with an array of extracellular recording locations. Numerical techniques of current source-density analysis indicated that at the peak of the somatic population spike, there was an extracellular current sink near pyramidal somata and sources in distal dendritic regions. It is concluded that during population spikes an extracellular electrical field causes currents to flow passively across inactive pyramidal cell membranes, thus depolarizing their somata. The transmembrane depolarizations associated with population spikes would tend to excite and synchronize the population of pyramidal cells.


2008 ◽  
Vol 20 (6) ◽  
pp. 1512-1536 ◽  
Author(s):  
José Ambros-Ingerson ◽  
Lawrence M. Grover ◽  
William R. Holmes

The suprathreshold electrophysiological responses of pyramidal cells have been grouped into large classes such as bursting and spiking. However, it is not known whether, within a class, response variability ranges uniformly across all cells or whether each cell has a unique and consistent profile that can be differentiated. A major difficulty when comparing suprathreshold responses is that slight variations in spike timing in otherwise very similar traces render traditional metrics ineffective. To address these issues, we developed a novel distance measure based on fiducial points to quantify the similarity among traces with trains of action potentials and applied it together with classification techniques to a set of in vitro patch clamp recordings from CA1 pyramidal cells. We tested if responses to repeated current stimulation of a given cell would cluster together yet remain distinct from those of other cells. We found that depolarizing and hyperpolarizing current pulses elicited responses in each cell that clustered and were systematically distinguishable from responses in other cells. The fiducial-point distance measure was more effective than other methods based on spike times and voltage-gradient phase planes. Depolarizing traces were more reliably differentiated than hyperpolarizing traces, and combining both scores was even more effective. These results suggest that each CA1 pyramidal cell has unique properties that can be detected and quantified with methods discussed here. This uniqueness may be due to slight variations in morphology or membrane channel densities and kinetics, or to large, coordinated variations in these elements. Ascertaining the actual sources and their degree of variability is important when constructing network models of neural function to ensure that key mechanisms are robust in the face of variations within these ranges. The analytical tools presented here can assist in constructing detailed cell models to match experimental records to elucidate the sources of electrophysiological variability in neurons.


2007 ◽  
Vol 104 (18) ◽  
pp. 7640-7645 ◽  
Author(s):  
Masahiro Mori ◽  
Beat H. Gähwiler ◽  
Urs Gerber

The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pairs of neurons, burst firing of a granule cell increased the probability of glutamate release onto both CA3 pyramidal cells and inhibitory interneurons, such that subsequent low-frequency stimulation evoked biphasic excitatory/inhibitory responses in a CA3 pyramidal cell, an effect lasting for minutes. Analysis of the unitary connections in the circuit revealed that granule cell bursting caused powerful activation of an inhibitory network, thereby transiently suppressing excitatory input to CA3 pyramidal cells. This phenomenon reflects the high incidence of spike-to-spike transmission at granule cell to interneuron synapses, the numerically much greater targeting by mossy fibers of inhibitory interneurons versus principal cells, and the extensively divergent output of interneurons targeting CA3 pyramidal cells. Thus, mossy-fiber input to CA3 pyramidal cells appears to function in three distinct modes: a resting mode, in which synaptic transmission is ineffectual because of high failure rates; a bursting mode, in which excitation predominates; and a postbursting mode, in which inhibitory input to the CA3 pyramidal cells is greatly enhanced. A mechanism allowing the transient recruitment of inhibitory input may be important for controlling network activity in the highly interconnected CA3 pyramidal cell region.


Sign in / Sign up

Export Citation Format

Share Document