scholarly journals Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

2017 ◽  
Vol 80 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Aleksandra Lisowska-Gaczorek ◽  
Beata Cienkosz-Stepańczak ◽  
Krzysztof Szostek

Abstract The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op) to the range of environmental background δ18O, most frequently determined on the basis of precipitation. The present work is a response to the need for providing background for oxygen isotope studies on skeletons excavated in Poland. Currently there no monitoring of the isotope composition of precipitation water in Poland is conducted. For this reason, based on the data generated in the Online Isotopes In Precipitation Calculator (OIPC), a database was developed, containing δ18O levels in precipitation for locations in which exploration work was carried out in the archaeological fields from Poland. In total, 279 locations were analysed. The result of the data analysis was a complete isotope composition map for Poland with four zones distinguished by δ18Ow values. The observable differences in oxygen isotope composition of precipitation in Poland are sufficient to trace migrations of individuals and populations, although accurate only at the level of macroregions.

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 987
Author(s):  
Lianjun Feng ◽  
Hongwei Li ◽  
Tiejun Li

Hematite is a potential mineral for reconstructing the oxygen isotope composition and paleotemperature of paleowater. A highly accurate analysis of oxygen isotopes is essential. However, relative to other oxygenated minerals, we lack hematite reference materials that allow for internationally comparable analyses between different laboratories. To address this issue, we attempted to perform bulk rock oxygen isotope analysis on five hematite reference materials (GBW07223a, GBW07825, YSBC28740-95, YSBC28756-2008, Harvard 92649). Meanwhile, the oxygen isotope ratios of iron oxides (GBW07223a, GBW07825, YSBC28740-95, YSBC28756-2008) were obtained by mass balance involving other oxygen-bearing minerals such as quartz and silicates. In addition, the oxygen isotope ratios of iron oxides in an oolitic hematite (ca. 1.65 billion years ago) are consistent with the results of previous analyses of this class of minerals.


2017 ◽  
pp. 19
Author(s):  
Casandra Reyes-García ◽  
José Luis Andrade

Stable isotope studies of elements in biological organisms have become a useful tool to assess the exchange of molecules in the biosphere. Since water is one of the most abundant molecules in such an exchange, studies on stable isotopes of hydrogen and oxygen have become a fundamental component of many plant ecophysiological studies, from the leaf level to the reconstruction of past climates. In this review, we mention the most common methodologies, general notation and the most relevant research on hydrogen and oxygen stable isotopes. Also, we discuss studies on plant water sources, leaf isotopic enrichment due to transpiration, the relationship between environment and oxygen stable isotopes in organic matter, and present studies that propose some plant species as environmental indicators in a globally changing world.


2018 ◽  
Vol 115 (26) ◽  
pp. 6602-6607 ◽  
Author(s):  
Uri Ryb ◽  
John M. Eiler

The18O/16O of calcite fossils increased by ∼8‰ between the Cambrian and present. It has long been controversial whether this change reflects evolution in the δ18O of seawater, or a decrease in ocean temperatures, or greater extents of diagenesis of older strata. Here, we present measurements of the oxygen and ‟clumped” isotope compositions of Phanerozoic dolomites and compare these data with published oxygen isotope studies of carbonate rocks. We show that the δ18O values of dolomites and calcite fossils of similar age overlap one another, suggesting they are controlled by similar processes. Clumped isotope measurements of Cambrian to Pleistocene dolomites imply crystallization temperatures of 15–158 °C and parent waters having δ18OVSMOWvalues from −2 to +12‰. These data are consistent with dolomitization through sediment/rock reaction with seawater and diagenetically modified seawater, over timescales of 100 My, and suggest that, like dolomite, temporal variations of the calcite fossil δ18O record are largely driven by diagenetic alteration. We find no evidence that Phanerozoic seawater was significantly lower in δ18O than preglacial Cenozoic seawater. Thus, the fluxes of oxygen–isotope exchange associated with weathering and hydrothermal alteration reactions have remained stable throughout the Phanerozoic, despite major tectonic, climatic and biologic perturbations. This stability implies that a long-term feedback exists between the global rates of seafloor spreading and weathering. We note that massive dolomites have crystallized in pre-Cenozoic units at temperatures >40 °C. Since Cenozoic platforms generally have not reached such conditions, their thermal immaturity could explain their paucity of dolomites.


2019 ◽  
Vol 104 (10) ◽  
pp. 1503-1520 ◽  
Author(s):  
Katharina Marger ◽  
Cindy Luisier ◽  
Lukas P. Baumgartner ◽  
Benita Putlitz ◽  
Barbara L. Dutrow ◽  
...  

Abstract A series of tourmaline reference materials are developed for in situ oxygen isotope analysis by secondary ion mass spectrometry (SIMS), which allow study of the tourmaline compositions found in most igneous and metamorphic rocks. The new reference material was applied to measure oxygen isotope composition of tourmaline from metagranite, meta-leucogranite, and whiteschist from the Monte Rosa nappe (Western Alps). The protolith and genesis of whiteschist are highly debated in the literature. Whiteschists occur as 10 to 50 m tube-like bodies within the Permian Monte Rosa granite. They consist of chloritoid, talc, phengite, and quartz, with local kyanite, garnet, tourmaline, and carbonates. Whiteschist tourmaline is characterized by an igneous core and a dravitic overgrowth (XMg > 0.9). The core reveals similar chemical composition and zonation as meta-leucogranitic tourmaline (XMg = 0.25, δ18O = 11.3–11.5‰), proving their common origin. Dravitic overgrowths in whiteschists have lower oxygen isotope compositions (8.9–9.5‰). Tourmaline in metagranite is an intermediate schorl-dravite with XMg of 0.50. Oxygen isotope data reveal homogeneous composition for metagranite and meta-leucogranite tourmalines of 10.4–11.3‰ and 11.0–11.9‰, respectively. Quartz inclusions in both meta-igneous rocks show the same oxygen isotopic composition as the quartz in the matrix (13.6–13.9‰). In whiteschist the oxygen isotope composition of quartz included in tourmaline cores lost their igneous signature, having the same values as quartz in the matrix (11.4–11.7‰). A network of small fractures filled with dravitic tourmaline can be observed in the igneous core and suggested to serve as a connection between included quartz and matrix, and lead to recrystallization of the inclusion. In contrast, the igneous core of the whiteschist tourmaline fully retained its magmatic oxygen isotope signature, indicating oxygen diffusion is extremely slow in tourmaline. Tourmaline included in high-pressure chloritoid shows the characteristic dravitic overgrowth, demonstrating that chloritoid grew after the metasomatism responsible for the whiteschist formation, but continued to grow during the Alpine metamorphism. Our data on tourmaline and quartz show that tourmaline-bearing white-schists originated from the related meta-leucogranites, which were locally altered by late magmatic hydrothermal fluids prior to Alpine high-pressure metamorphism.


2012 ◽  
Vol 1 (1) ◽  
pp. 87-91
Author(s):  
Dawid Surmik ◽  
Andrzej Pelc

Abstract The oxygen stable isotopes investigation to elucidate thermoregulatory strategies in Middle Triassic basal sauropterygians is currently ongoing at University of Silesia and University of Maria Curie-Skłodowska. The results of similar studies on Late Mesozoic marine reptiles indicate that some of fully aquatic reptiles like plesiosaurs or ichthyosaurs could be warm-blooded animals. Our investigation is an important part of the aim of the research project "The Marine and Terrestrial reptiles in the Middle Triassic environmental background of Southern Poland" to solve the thermoregulation issue in basal marine reptiles and show how, and when did homoiothermy evolve in Sauropterygia.. Homeothermy and gigantothermy were important physiological adaptations which allowed sauropterygian ancestors to leave the shores and conquer the open seas and oceans.


2016 ◽  
Vol 16 (4) ◽  
pp. 2659-2673 ◽  
Author(s):  
Joël Savarino ◽  
William C. Vicars ◽  
Michel Legrand ◽  
Suzanne Preunkert ◽  
Bruno Jourdain ◽  
...  

Abstract. Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O excess (Δ17O = δ17O − 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial–interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21–22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3−) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.


2009 ◽  
Vol 33 (-1) ◽  
pp. 33-36 ◽  
Author(s):  
Algirdas Gaigalas ◽  
Stanislaw Halas

Stable Isotopes (H, C, S) and the Origin of Baltic Amber New results of isotope analysis of light elements (H, C and S) of a dozen Baltic amber samples are described and discussed. Carbon isotope composition was nearly constant (ca. -23‰), whereas sulphur and hydrogen varied in their isotope compositions from +4 to -28‰ and from -171 to -213‰, respectively. The formation and subsequent evolution of this material since its origin in Paleogene time until present is outlined.


Clay Minerals ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 345-349 ◽  
Author(s):  
R. Nuñez ◽  
J . Capel ◽  
E. Reyes ◽  
A. Delgado

AbstractHand-made bricks were manufactured from natural sediments by firing at 700°C and 800°C after which they were hydrothermally altered at 150°C in a high-pressure reactor for 1200 h. Sediments and fired pieces were studied by X-ray diffraction. The <2 μm size-fraction of fired and hydrolysed samples were also studied by X-ray diffraction and oxygen isotope analysis. The oxygen isotope composition of the samples became depleted in 18O by alteration. Our results are consistent with a process of hydration and hydroxylation of the partially destroyed clay minerals in the fired bricks. The work is relevant to understanding the origins and alteration processes in old ceramic materials.


2022 ◽  
Author(s):  
Katarzyna Stanienda-Pilecki

Abstract The results of researches of the stable isotopes, carbon 13C and oxygen 18O, measured in Triassic limestones of Opole Silesia in Poland were presented in this article. The study was carried out to obtain data for interpretation of the environment of these rocks formation. Moreover, it was possible to form the theory about diagenetic processes which influenced on the mineral composition of limestone and some of their carbonte phases. The results of study show a general differentiation of δ13C and δ18O contents in carbonate minerals. All δ18O values are less than 0 ‰. It indicates that the origin oxygen isotope composition could be probably reset by diagenesis. The crystallization temperatures of low-Mg calcite and high-Mg, calculated on the basis of δ18O values are greater than 25 oC. They are higher than typical for sea basin and are also not be related to the presence of hydrothermal solutions. The increased temperatures of calcites crystallization are related to diagenetic processes that took place after the deposition and burial of carbonate material. The preservation of high-Mg calcite, an ustable carbonate phase, which is usually trasformed into low-Mg calcite during diagenesis, is probably connected with the increased salinity of the sea basin in which studied limestones were formed.


Sign in / Sign up

Export Citation Format

Share Document