Multimodal Perceptual Training for Improving Spatial Auditory Performance in Blind and Sighted Listeners

2015 ◽  
Vol 40 (4) ◽  
pp. 491-502
Author(s):  
Oana Bălan ◽  
Alin Moldoveanu ◽  
Florica Moldoveanu

Abstract The use of individualised Head Related Transfer Functions (HRTF) is a fundamental prerequisite for obtaining an accurate rendering of 3D spatialised sounds in virtual auditory environments. The HRTFs are transfer functions that define the acoustical basis of auditory perception of a sound source in space and are frequently used in virtual auditory displays to simulate free-field listening conditions. However, they depend on the anatomical characteristics of the human body and significantly vary among individuals, so that the use of the same dataset of HRTFs for all the users of a designed system will not offer the same level of auditory performance. This paper presents an alternative approach to the use on non-individualised HRTFs that is based on a procedural learning, training, and adaptation to altered auditory cues.We tested the sound localisation performance of nine sighted and visually impaired people, before and after a series of perceptual (auditory, visual, and haptic) feedback based training sessions. The results demonstrated that our subjects significantly improved their spatial hearing under altered listening conditions (such as the presentation of 3D binaural sounds synthesised from non-individualized HRTFs), the improvement being reflected into a higher localisation accuracy and a lower rate of front-back confusion errors.

2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Alexander Tyapin

The author extends the previously proposed combined asymptotic method (CAM) of seismic SSI analysis for the multi-support systems and applies it to the transportation portal as a double-support system (together with the reactor building). The key issue is the development of the structural dynamic stiffness matrix condensed to the supports by the modal approach. Then the condensed structural matrix is combined with the soil dynamic stiffness matrix also condensed to the rigid basements. As a result, a very simple linear system is solved in the frequency domain. This gives the transfer functions from the free-field motion to the motion of the basements. The only important limitations are the linearity of the soil’s and structure’s properties and the rigidity of the basements. The results for the sample system are checked against the full SASSI solution. The results can be used to justify the further simplification of the system.


2021 ◽  
Vol 263 (4) ◽  
pp. 2863-2874
Author(s):  
Edward Zechmann

To support purchasing low noise products, sound power and sound energy measurements of sufficient quality need to be routinely made by consumers on a global scale. Sound power measurements using ISO 3744, 3745, and 3746 are conducted in a free field using an acoustic far-field approximation of the intensity integrated over an enveloping measurement surface. Sound power and sound energy measurements generally use a hemispherical, parallelepiped, or cylindrical measurement surface. Those measurement surfaces have limitations and assume that the measurement points lie on the measurement surface often in preferred positions. An alternative approach is to choose microphone positions that optimally satisfy the assumptions of the measurement. The measurement surface should then be fit to the chosen microphone positions. Regression methodologies are available for fitting ellipsoids. The number of microphone positions can be as few as three to fit an ellipsoid. An ellipsoidal measurement surfaces can abut zero, one, two, or three orthogonal reflecting planes. Correction equations for the microphone locations and the angle errors for the microphone orientation and wave propagation direction are shown. This paper will present simulations of sound power, sound energy, and corrections for environmental reflections for ISO 3745 and other measurement surfaces.


1989 ◽  
Vol 79 (1) ◽  
pp. 1-14
Author(s):  
C. B. Crouse ◽  
Behnam Hushmand

Abstract Forced harmonic and impulse-response vibration tests were conducted at several California accelerograph stations operated by the California Division of Mines and Geology (CDMG) and U.S. Geological Survey (USGS) to determine the extent to which soil-structure interaction may be affecting the recorded ground motions. The results of the tests on the foundations comprising USGS Station 6 in the Imperial Valley and CDMG Cholame 1E and Fault Zone 3 stations in the Cholame Valley indicated the presence of highly damped fundamental frequencies between 20 and 40 Hz. However, at the much larger Differential Array station, a masonry-block structure approximately 6 km southwest of Station 6, a moderately damped fundamental frequency of 12 Hz was observed. Approximate transfer functions between earthquake motions recorded at the stations and the free-field motions were computed from the response data obtained from the forced harmonic vibration tests. For the three smaller stations, these functions showed peak amplification factors ranging from 1.25 to 1.4 at frequencies between 20 and 40 Hz. The amplification at smaller frequencies was insignificant. For the Differential Array station, the amplification factor was 1.5 at 12 Hz and was roughly 0.6 for frequencies between 14 and 25 Hz. These results suggest that soil-structure interaction will have little effect on ground motions recorded at the smaller stations provided that most of the energy in these motions is confined to frequencies less than approximately 20 Hz. However, at the Differential Array station, soil-structure interaction probably has had, and will continue to have, a significant influence on the motions recorded at this station.


Author(s):  
Elaine Thai ◽  
Anil R. Kumar

Mechanisms for training pool skills have evolved from manually setting up balls in different positions on the table and hitting them one-by-one to now using technology to precisely set up these plays and practice the game virtually. The aim of this study was to investigate how adding haptic feedback into a pool video game affects transfer of training into real-life pool skills. A 2 x 4 mixed factorial design was used to see how haptic feedback (its absence or presence) and four types of shots affect pool performance. Half of the participants experienced the pool video game without haptic feedback while the other half experienced it with haptic feedback. Performance before and after the video game practice was recorded as successful or unsuccessful, with a series of the same 40 pre- and post-video-game shots. Results from 38 participants are presented, and their implications are discussed.


2018 ◽  
Vol 23 (01) ◽  
pp. 012-017 ◽  
Author(s):  
Fayez Bahmad Jr ◽  
Carolina Cardoso ◽  
Fernanda Caldas ◽  
Monique Barreto ◽  
Anacléia Hilgenberg ◽  
...  

Introduction The bone-anchored hearing aid (BAHA) is a bone conduction system that transmits the sound directly to the inner ear by surpassing the skin impedance and the subcutaneous tissue. It is indicated for patients with mixed, conductive and unilateral sensorineural hearing loss who did not benefit from conventional hearing aids (HAs). Although the benefits from BAHA are well demonstrated internationally, this field still lacks studies in Brazil. Objective To assess the auditory rehabilitation process in BAHA users through audiological, speech perception and tinnitus aspects. Methods Individuals with hearing loss were assessed before and after the implantation. The participants were subjected to pure tone audiometry in free field, functional gain audiometry, speech perception tests, tinnitus handicap inventory (THI) in open format, and to the visual analog scale (VAS). Results It was found that the participants benefited from the use of BAHA. The difference in the performance of the participants before and after the BAHA surgery was significant in terms of hearing acuity. There was no statistically significant difference in the speech perception tests. The tinnitus assessment showed that 80% of the participants scored slight tinnitus severity in THI after using a BAHA. Eighty percent of the participants classified their tinnitus as absent to mild in the VAS after the surgery. Conclusion Based on the results of the current study, we can conclude that the participants improved both the auditory perception and the tinnitus handicap.


2013 ◽  
Vol 34 (9) ◽  
pp. 1642-1647 ◽  
Author(s):  
Stanley Pelosi ◽  
George B. Wanna ◽  
Rene H. Gifford ◽  
Allyson Sisler-Dinwiddie ◽  
Gabriela P. Bom Braga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document