skin impedance
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8143
Author(s):  
Cláudia Lopes ◽  
Patrique Fiedler ◽  
Marco Sampaio Rodrigues ◽  
Joel Borges ◽  
Maurizio Bertollo ◽  
...  

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti–Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti–Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti–Me intermetallic thin films, and evaluation of the impact of the electrode–skin impedance on biopotential sensing. The electrode–skin impedance results support the reusability and the high degree of reliability of the Ti–Me dry electrodes. The Ti–Al films revealed the least performance as biopotential electrodes, while the Ti–Au system provided excellent results very close to the Ag/AgCl reference electrodes.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8118
Author(s):  
Jin-Chul Heo ◽  
Doyoon Kim ◽  
Hyunsoo An ◽  
Chang-Sik Son ◽  
Sangwoo Cho ◽  
...  

The deficiency and excess of vitamin D cause various diseases, necessitating continuous management; but it is not easy to accurately measure the serum vitamin D level in the body using a non-invasive method. The aim of this study is to investigate the correlation between vitamin D levels, body information obtained by an InBody scan, and blood parameters obtained during health checkups, to determine the optimum frequency of vitamin D quantification in the skin and to propose a vitamin D measurement method based on impedance. We assessed body composition, arm impedance, and blood vitamin D concentrations to determine the correlation between each element using multiple machine learning analyses and an algorithm which predicted the concentration of vitamin D in the body using the impedance value developed. Body fat percentage obtained from the InBody device and blood parameters albumin and lactate dehydrogenase correlated with vitamin D level. An impedance measurement frequency of 21.1 Hz was reflected in the blood vitamin D concentration at optimum levels, and a confidence level of about 75% for vitamin D in the body was confirmed. These data demonstrate that the concentration of vitamin D in the body can be predicted using impedance measurement values. This method can be used for predicting and monitoring vitamin D-related diseases and may be incorporated in wearable health measurement devices.


Author(s):  
Aaisha Diaa-Aldeen Abdullah ◽  
Auns Q. Al-Neami

Traditional wet silver/silver chloride electrodes are used to record electroencephalography (EEG) signals mainly because of their potential repeatability, excellent signal to noise ratio and biocompatibility. This type of electrode is only suitable for conductive glue, which can irritate the skin and cause injury. In addition, as time goes the conductive gel will be dehydrated so the quality of the EEG signal will decrease. To overcome these problems, 3D printed dry-contact electrodes with multi-pins are designed in this work to measure brain signals without prior preparation or gel application. 3D printed electrodes are made from polylactic acids polymer and coated with suitable materials to enhance the conductivity. Electrode-scalp impedance on human was also measured. To evaluate the dry-contact electrode, EEG measurement are performed in subjects and compared with EEG signals acquired by wet electrode by using linear correlation coefficient. Experimentally results showed that the average electrode-skin impedance change of dry electrode in frontal site (9.42-7.25KΩ) and in occipital site (9.56-8.66KΩ). The correlation coefficient between dry and wet electrodes in frontal site (91.4%) and in occipital site (80%). To conclude, the 3D printed dry-contact electrode can be will promising applied on hairy site and provide a promising solutions for long-term monitoring EEG.


Author(s):  
Bruna Gabriela Pedro ◽  
Pedro Betemes-Filho

The signature of chaotic systems can be characterized either by the sensitivity of the initial conditions or by the change of its parameters. This feature can be used for manufacturing high sensitivity sensors. Sensors based on chaotic circuits have already been used for measuring water salinity, inductive effects, and both noise and weak signals. This article investigates an impedance sensor based on the Van der Pol and Duffing damped oscillators. The calibration process is a key point and therefore the folding behavior of signal periods was also explored. A sensitivity of 0.15 kΩ/Period was estimated over a range from 89.5 to 91.6 kΩ. This range can be adjusted according to the application by varying the gain of the operational amplifier used in this implementation. The development of this type of sensor might be used in medical and biological engineering for skin impedance measurements, for example. This type of chaotic sensor has the advantage of sensing small disturbances and then detect small impedance changes within biological materials which, in turn, may not be possible with other detectors.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5621
Author(s):  
Gozde Goncu-Berk ◽  
Bilge Guvenc Tuna

When e-textile EMG electrodes are integrated into clothing, the fit of the clothing on the body, and therefore its pattern and cut become important factors affecting the EMG signal quality in relation to the seamless contact between the skin and the e-textile electrode. The research so far on these effects was conducted on commercially available clothing or in tubular sleeve forms for arms. There is no study that investigated different clothing pattern and fit conditions and their effect on e-textile EMG electrode performance. This study investigates the effect of clothing pattern and fit in EMG applications using e-textile electrodes integrated onto the sleeves of custom drafted t-shirts in set-in and raglan sleeve pattern variations. E-textile electrode resistance, signal-to-noise ratio (SNRdB), power spectral density and electrode–skin impedance are measured and evaluated in set-in sleeve and raglan sleeve conditions with participants during a standardized arm movement protocol in comparison to the conventional hydrogel Ag/AgCl electrodes. The raglan sleeve pattern, widely used in athletic wear to provide extra ease for the movement of the shoulder joint, showed superior performance and therefore indicated the pattern and cut of a garment could have significant effect on EMG signal quality in designing smart clothing.


2021 ◽  
Author(s):  
Alexander J. Towse ◽  
Benjamin C. Fortune ◽  
Chistopher G. Pretty ◽  
Michael P. Hayes

Abstract This paper discusses the development of a tripolar EMG device featuring electrode impedance compensation circuitry. The device also includes circuitry to test the effectiveness of these features at improving EMG signal quality. Due to various factors, the electrode-skin impedance of different electrodes is typically imbalanced. This imbalance increases EMG susceptibility to electrical noise. These issues can be mitigated by applying impedance compensation. This was done for a tripolar configuration specifically to also reduce interference due to crosstalk. The development process and design choices behind the device features are discussed, with particular focus on the impedance compensation circuit. This includes key components used, and the justification behind their selection. Testing found the tripolar electrode configuration had limited effect on crosstalk interference. Fortunately, the impedance compensation circuit could successfully correct for impedance imbalance. This led to a marked reduction in noise due to electrical interference, such as from 50Hz mains hum.


Author(s):  
Mohamed S. Ghoneim ◽  
Amr Mohammaden ◽  
Lobna A. Said ◽  
Ahmed H. Madian ◽  
Ahmed G. Radwan ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yue Hou ◽  
Zhaoyu Li ◽  
Ziyu Wang ◽  
Hongyu Yu

AbstractHighly reliable signal recording with low electrode-skin impedance makes the microneedle array electrode (MAE) a promising candidate for biosignal sensing. However, when used in long-term health monitoring for some incidental diseases, flexible microneedles with perfectly skin-tight fit substrates lead to sweat accumulation inside, which will not only affect the signal output but also trigger some skin allergic reactions. In this paper, a flexible MAE on a Miura-ori structured substrate is proposed and fabricated with two-directional in-plane bendability. The results from the comparison tests show enhanced performance in terms of (1) the device reliability by resisting peeling off of the metal layer from the substrate during the operation and (2) air ventilation, achieved from the air-circulating channels, to remove sweat. Bio-signal recordings of electrocardiography (ECG), as well as electromyography (EMG) of the biceps brachii, in both static and dynamic states, are successfully demonstrated with superior accuracy and long-term stability, demonstrating the great potential in health monitoring applications.


2021 ◽  
pp. 1-15
Author(s):  
Abayomi Tolulope Ogunjimi ◽  
Christine Lawson ◽  
Jamie Carr ◽  
Krishna Kumar Patel ◽  
Nkanyezi Ferguson ◽  
...  

<b><i>Introduction:</i></b> The continuous availability of open micropores is crucial for a successful microneedle (MN) drug delivery strategy. However, micropore lifetime depends on intrinsic skin functional and anatomical characteristics, which vary significantly at different anatomical sites. <b><i>Objective:</i></b> This pilot study explored if differences exist in micropore closure timeframes at 3 anatomical sites – upper arm, volar forearm, and abdomen. <b><i>Methods:</i></b> Healthy subjects (<i>n</i> = 35) self-identifying as Asian (<i>n</i> = 9), Bi-/multiracial (<i>n</i> = 2), Black (<i>n</i> = 9), Latino (<i>n</i> = 6), and White (<i>n</i> = 9) completed the study. The upper arm, volar forearm, and abdomen were treated with MNs; skin impedance and transepidermal water loss (TEWL) were measured at baseline and post-MN to confirm micropore formation. Impedance was measured for 3 days to evaluate micropore lifetime. Measurements of L*, which quantifies the skin lightness/darkness, were made using a tristimulus colorimeter. Micropore lifetime was determined by comparing baseline and post-MN impedance measurements, and micropore closure half-life was predicted using mathematical modeling. <b><i>Results:</i></b> Post-MN increase in TEWL and decrease in impedance were significant (<i>p</i> &#x3c; 0.05), confirming successful micropore formation at all anatomical sites. When data were analyzed according to subject self-identified racial/ethnic groups, the mean micropore closure time at the abdomen (63.09 ± 13.13 h) was longer than the upper arm (60.34 ± 14.69 h) and volar forearm (58.29 ± 16.76 h). The predicted micropore closure half-life at anatomical sites was the abdomen (25.86 ± 14.96 h) ≈ upper arm (23.69 ± 13.67 h) &#x3e; volar forearm (20.2 ± 11.99 h). Differences were not statistically significant between groups. Objective categorization by L* showed that the darker skin may be associated with longer micropore closure time at the abdomen site. <b><i>Conclusions:</i></b> Our results suggest that anatomical site of application may not be a source of significant variability in micropore closure time. These findings may help reduce the number of physiological parameters that need to be explicitly considered when developing drug products to support MN-assisted drug delivery strategies.


Sign in / Sign up

Export Citation Format

Share Document