scholarly journals Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

2017 ◽  
Vol 38 (4) ◽  
pp. 191-207 ◽  
Author(s):  
Kinga Kowalska ◽  
Bogdan Ambrożek

Abstract The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Imen Amari ◽  
M. H. Chahbani

Heat and mass transfers inside an adsorbent bed of an adsorption heat pump (AHP) are considered poor; consequently, they can cause low system performance. They should be enhanced so as to increase the coefficient of performance of the cooling machine. The aim of this work is to study an adsorbent bed coated with the zeolite SAPO-34. A simulation model based on governing equations for energy, mass, and momentum transfers is developed using COMSOL Multiphysics software. The system zeolite SAPO-34/water has been considered. Modeling results are validated by experimental database available at the Institute for Advanced Energy Technologies “Nicola Giordano,” Italy. It has been shown that the adsorption heat pump performance is affected by both heat and mass transfer. The enhancement of heat transfer solely is not sufficient to attain high values of specific cooling power. In the case of water vapor/SAPO-34 pair, mass transfer has a significant impact on the duration of the cooling step which should be shortened if one would want to increase the specific cooling power. The sole way to do it is to enhance mass transfer inside porous adsorbent.


2018 ◽  
Vol 70 ◽  
pp. 01022
Author(s):  
Katarzyna Zwarycz-Makles

In the paper an analysis of the desorption temperature effect on the thermodynamic efficiency of the adsorption heat pumps is presented. The thermodynamic performance of heat pump is determined by Coefficient of Performance (COP) as well as exergetic efficiency coefficient (ηex) at the adsorption equilibrium conditions and compared to the performance at heat of evaporation of the working fluid conditions. Possible estimation of reduced efficiency of adsorption silica gel/water heat pump, as distinct from the equilibrium efficiency in realistic technical system is presented.


2011 ◽  
Vol 198 (10) ◽  
pp. 1275-1293 ◽  
Author(s):  
Hasan Demir ◽  
Moghtada Mobedi ◽  
Semra Ülkü

Sign in / Sign up

Export Citation Format

Share Document