Existence of positive solutions for nonlocal p ⁢ ( x ) p(x) -Kirchhoff elliptic systems

2019 ◽  
Vol 10 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Salah Boulaaras ◽  
Rafik Guefaifia ◽  
Khaled Zennir

Abstract In this article, we discuss the existence of positive solutions by using sub-super solutions concepts of the following {p(x)} -Kirchhoff system: \left\{\begin{aligned} &\displaystyle{-}M(I_{0}(u))\triangle_{p(x)}u=\lambda^{% p(x)}[\lambda_{1}f(v)+\mu_{1}h(u)]&&\displaystyle\text{in }\Omega,\\ &\displaystyle{-}M(I_{0}(v))\triangle_{p(x)}v=\lambda^{p(x)}[\lambda_{2}g(u)+% \mu_{2}\tau(v)]&&\displaystyle\text{in }\Omega,\\ &\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right. where {\Omega\subset\mathbb{R}^{N}} is a bounded smooth domain with {C^{2}} boundary {\partial\Omega} , {\triangle_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)} , {p(x)\in C^{1}(\overline{\Omega})} , with {1<p(x)} , is a function satisfying {1<p^{-}=\inf_{\Omega}p(x)\leq p^{+}=\sup_{\Omega}p(x)<\infty} , λ, {\lambda_{1}} , {\lambda_{2}} , {\mu_{1}} and {\mu_{2}} are positive parameters, {I_{0}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx} , and {M(t)} is a continuous function.

2017 ◽  
Vol 84 (1-2) ◽  
pp. 90
Author(s):  
S. H. Rasouli

<p>We analyze the existence of positive solutions of infinite semipositone nonlinear systems with multiple parameters of the form</p><span>{</span>Δu = α<sub>1</sub> (f (v)) - 1/<sub>u</sub><sup>n</sup>) + β<sub>1</sub>(h (u) - 1/<sub>u</sub><sup>n</sup>),     x € Ω),<br /> -Δv = α<sub>2</sub> (g (u)) - 1/<sub>v</sub><sup>θ</sup>) + β<sub>2</sub>(k (v) - 1/<sub>u</sub><sup>θ</sup>),    x € Ω), <br /> u = v = 0,                                                x € δΩ),<p>where Ω is a bounded smooth domain of R<sup>N</sup>, η, θ ε (0, 1), and α<sub>1</sub>, α<sub>2</sub>, β<sub>1</sub> and β<sub>2</sub> are nonnegative parameters. Here f, g, h, k ε C ([0, ∞ ]), are non-decreasing functions and f(0), g(0), h(0), k(0) &gt; 0. We use the method of sub-super solutions to prove the existence of positive solution for α<sub>1</sub> + β<sub>1</sub> and α<sub>2</sub> + β<sub>2</sub> large.</p>


2008 ◽  
Vol 2008 ◽  
pp. 1-25 ◽  
Author(s):  
Francisco Julio S. A. Corrêa ◽  
Rúbia G. Nascimento

Questions on the existence of positive solutions for the following class of elliptic problems are studied:−[M(‖u‖1,pp)]1,pΔpu=f(x,u), inΩ,u=0, on∂Ω, whereΩ⊂ℝNis a bounded smooth domain,f:Ω¯×ℝ+→ℝandM:ℝ+→ℝ,  ℝ+=[0,∞)are given functions.


Author(s):  
Zongming Guo

The structure of non-trivial non-negative solutions to singularly perturbed semilinear Dirichlet problems of the form −ε2Δu = f(u) in Ω, u = 0 on ∂Ω, Ω ⊂ RN a bounded smooth domain, is studied as ε → 0+, for a class of nonlinearities f(u) satisfying f(0) = f(z1) = f(z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1), f > 0 in (z1, z2) and . It is shown that there are many non-trivial non-negative solutions and they are spike-layer solutions. Moreover, the measure of each spike layer is estimated as ε → 0+. These results are applied to the study of the structure of positive solutions of the same problems with f changing sign many times in (0, ∞). Uniqueness of a large positive solution and many positive intermediate spike-layer solutions are obtained for ε sufficiently small.


2006 ◽  
Vol 74 (2) ◽  
pp. 263-277 ◽  
Author(s):  
Francisco Júlio ◽  
S. A. Corrêa ◽  
Giovany M. Figueiredo

This paper is concerned with the existence of positive solutions to the class of nonlocal boundary value problems of the p-Kirchhoff type and where Ω is a bounded smooth domain of ℝN, 1 < p < N, s ≥ p* = (pN)/(N – p) and M and f are continuous functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Rafik Guefaifia ◽  
Asma Alharbi

By using the sub- and supersolutions concept (Schmitt, 2007), we prove in this paper the existence of positive solutions of quasi-linear Kirchhoff elliptic systems in bounded smooth domains. This work is an extension of the recent work of Boulaaras et al., 2020.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Guowei Dai ◽  
Chunfeng Yang

We prove existence and multiplicity of positive solutions for semipositone problems involvingp-Laplacian in a bounded smooth domain ofℝNunder the cases of sublinear and superlinear nonlinearities term.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


Sign in / Sign up

Export Citation Format

Share Document