On a Class of Infinite Semipositone Nonlinear Systems with Multiple Parameters

2017 ◽  
Vol 84 (1-2) ◽  
pp. 90
Author(s):  
S. H. Rasouli

<p>We analyze the existence of positive solutions of infinite semipositone nonlinear systems with multiple parameters of the form</p><span>{</span>Δu = α<sub>1</sub> (f (v)) - 1/<sub>u</sub><sup>n</sup>) + β<sub>1</sub>(h (u) - 1/<sub>u</sub><sup>n</sup>),     x € Ω),<br /> -Δv = α<sub>2</sub> (g (u)) - 1/<sub>v</sub><sup>θ</sup>) + β<sub>2</sub>(k (v) - 1/<sub>u</sub><sup>θ</sup>),    x € Ω), <br /> u = v = 0,                                                x € δΩ),<p>where Ω is a bounded smooth domain of R<sup>N</sup>, η, θ ε (0, 1), and α<sub>1</sub>, α<sub>2</sub>, β<sub>1</sub> and β<sub>2</sub> are nonnegative parameters. Here f, g, h, k ε C ([0, ∞ ]), are non-decreasing functions and f(0), g(0), h(0), k(0) &gt; 0. We use the method of sub-super solutions to prove the existence of positive solution for α<sub>1</sub> + β<sub>1</sub> and α<sub>2</sub> + β<sub>2</sub> large.</p>

2019 ◽  
Vol 10 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Salah Boulaaras ◽  
Rafik Guefaifia ◽  
Khaled Zennir

Abstract In this article, we discuss the existence of positive solutions by using sub-super solutions concepts of the following {p(x)} -Kirchhoff system: \left\{\begin{aligned} &\displaystyle{-}M(I_{0}(u))\triangle_{p(x)}u=\lambda^{% p(x)}[\lambda_{1}f(v)+\mu_{1}h(u)]&&\displaystyle\text{in }\Omega,\\ &\displaystyle{-}M(I_{0}(v))\triangle_{p(x)}v=\lambda^{p(x)}[\lambda_{2}g(u)+% \mu_{2}\tau(v)]&&\displaystyle\text{in }\Omega,\\ &\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right. where {\Omega\subset\mathbb{R}^{N}} is a bounded smooth domain with {C^{2}} boundary {\partial\Omega} , {\triangle_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)} , {p(x)\in C^{1}(\overline{\Omega})} , with {1<p(x)} , is a function satisfying {1<p^{-}=\inf_{\Omega}p(x)\leq p^{+}=\sup_{\Omega}p(x)<\infty} , λ, {\lambda_{1}} , {\lambda_{2}} , {\mu_{1}} and {\mu_{2}} are positive parameters, {I_{0}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx} , and {M(t)} is a continuous function.


Author(s):  
Zongming Guo

The structure of non-trivial non-negative solutions to singularly perturbed semilinear Dirichlet problems of the form −ε2Δu = f(u) in Ω, u = 0 on ∂Ω, Ω ⊂ RN a bounded smooth domain, is studied as ε → 0+, for a class of nonlinearities f(u) satisfying f(0) = f(z1) = f(z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1), f > 0 in (z1, z2) and . It is shown that there are many non-trivial non-negative solutions and they are spike-layer solutions. Moreover, the measure of each spike layer is estimated as ε → 0+. These results are applied to the study of the structure of positive solutions of the same problems with f changing sign many times in (0, ∞). Uniqueness of a large positive solution and many positive intermediate spike-layer solutions are obtained for ε sufficiently small.


2008 ◽  
Vol 2008 ◽  
pp. 1-25 ◽  
Author(s):  
Francisco Julio S. A. Corrêa ◽  
Rúbia G. Nascimento

Questions on the existence of positive solutions for the following class of elliptic problems are studied:−[M(‖u‖1,pp)]1,pΔpu=f(x,u), inΩ,u=0, on∂Ω, whereΩ⊂ℝNis a bounded smooth domain,f:Ω¯×ℝ+→ℝandM:ℝ+→ℝ,  ℝ+=[0,∞)are given functions.


2016 ◽  
Vol 18 (02) ◽  
pp. 1550021 ◽  
Author(s):  
Marcelo F. Furtado ◽  
Bruno N. Souza

We consider the problem [Formula: see text] where [Formula: see text] is a bounded smooth domain, [Formula: see text], [Formula: see text], [Formula: see text]. Under some suitable conditions on the continuous potential [Formula: see text] and on the parameter [Formula: see text], we obtain one nodal solution for [Formula: see text] and one positive solution for [Formula: see text].


2006 ◽  
Vol 74 (2) ◽  
pp. 263-277 ◽  
Author(s):  
Francisco Júlio ◽  
S. A. Corrêa ◽  
Giovany M. Figueiredo

This paper is concerned with the existence of positive solutions to the class of nonlocal boundary value problems of the p-Kirchhoff type and where Ω is a bounded smooth domain of ℝN, 1 < p < N, s ≥ p* = (pN)/(N – p) and M and f are continuous functions.


2022 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Mohamed Maizi ◽  
Salah Boulaaras ◽  
Abdelouahab Mansour ◽  
Mohamed Haiour

In this paper, by using sub-super solutions method, we study the existence of weak positive solution of Kirrchoff hyperbolic systems in bounded domains with multiple parameters. These results extend and improve many results in the literature


Author(s):  
Yin Xi Huang

AbstractWe are concerned with the existence of solutions ofwhere Δp is the p-Laplacian, p ∈ (1, ∞), and Ω is a bounded smooth domain in ℝn.For h(x) ≡ 0 and f(x, u) satisfying proper asymptotic spectral conditions, existence of a unique positive solution is obtained by invoking the sub-supersolution technique and the spectral method. For h(x) ≢ 0, with assumptions on asymptotic behavior of f(x, u) as u → ±∞, an existence result is also proved.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Guowei Dai ◽  
Chunfeng Yang

We prove existence and multiplicity of positive solutions for semipositone problems involvingp-Laplacian in a bounded smooth domain ofℝNunder the cases of sublinear and superlinear nonlinearities term.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


Sign in / Sign up

Export Citation Format

Share Document