scholarly journals Construction and stability of type I blowup solutions for non-variational semilinear parabolic systems

2019 ◽  
Vol 10 (4) ◽  
pp. 299-312
Author(s):  
Tej-Eddine Ghoul ◽  
Van Tien Nguyen ◽  
Hatem Zaag

AbstractIn this note, we consider the semilinear heat system\partial_{t}u=\Delta u+f(v),\quad\partial_{t}v=\mu\Delta v+g(u),\quad\mu>0,where the nonlinearity has no gradient structure taking of the particular formf(v)=v\lvert v\rvert^{p-1}\quad\text{and}\quad g(u)=u\lvert u\rvert^{q-1}\quad% \text{with }p,q>1,orf(v)=e^{pv}\quad\text{and}\quad g(u)=e^{qu}\quad\text{with }p,q>0.We exhibit type I blowup solutions for this system and give a precise description of its blowup profiles. The method relies on a two-step procedure: the reduction of the problem to a finite-dimensional one via a spectral analysis, and then solving the finite-dimensional problem by a classical topological argument based on index theory. As a consequence of our technique, the constructed solutions are stable under a small perturbation of initial data. The results and the main arguments presented in this note can be found in our papers [T.-E. Ghoul, V. T. Nguyen and H. Zaag, Construction and stability of blowup solutions for a non-variational semilinear parabolic system, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 2018, 6, 1577–1630] and [M. A. Herrero and J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 19 1992, 3, 381–450].

2019 ◽  
Vol 9 (1) ◽  
pp. 388-412 ◽  
Author(s):  
Tej-Eddine Ghoul ◽  
Van Tien Nguyen ◽  
Hatem Zaag

Abstract We consider the higher-order semilinear parabolic equation $$\begin{array}{} \displaystyle \partial_t u = -(-{\it\Delta})^{m} u + u|u|^{p-1}, \end{array}$$ in the whole space ℝN, where p > 1 and m ≥ 1 is an odd integer. We exhibit type I non self-similar blowup solutions for this equation and obtain a sharp description of its asymptotic behavior. The method of construction relies on the spectral analysis of a non self-adjoint linearized operator in an appropriate scaled variables setting. In view of known spectral and sectorial properties of the linearized operator obtained by Galaktionov [15], we revisit the technique developed by Merle-Zaag [23] for the classical case m = 1, which consists in two steps: the reduction of the problem to a finite dimensional one, then solving the finite dimensional problem by a classical topological argument based on the index theory. Our analysis provides a rigorous justification of a formal result in [15].


Sign in / Sign up

Export Citation Format

Share Document