scholarly journals Prediction of Blended Yarn Evenness and Tensile Properties by Using Artificial Neural Network and Multiple Linear Regression

2016 ◽  
Vol 16 (2) ◽  
pp. 43-50 ◽  
Author(s):  
Samander Ali Malik ◽  
Assad Farooq ◽  
Thomas Gereke ◽  
Chokri Cherif

Abstract The present research work was carried out to develop the prediction models for blended ring spun yarn evenness and tensile parameters using artificial neural networks (ANNs) and multiple linear regression (MLR). Polyester/cotton blend ratio, twist multiplier, back roller hardness and break draft ratio were used as input parameters to predict yarn evenness in terms of CVm% and yarn tensile properties in terms of tenacity and elongation. Feed forward neural networks with Bayesian regularisation support were successfully trained and tested using the available experimental data. The coefficients of determination of ANN and regression models indicate that there is a strong correlation between the measured and predicted yarn characteristics with an acceptable mean absolute error values. The comparative analysis of two modelling techniques shows that the ANNs perform better than the MLR models. The relative importance of input variables was determined using rank analysis through input saliency test on optimised ANN models and standardised coefficients of regression models. These models are suitable for yarn manufacturers and can be used within the investigated knowledge domain.

2019 ◽  
Vol 11 (14) ◽  
pp. 216 ◽  
Author(s):  
Bruno V. C. Guimarães ◽  
Sérgio L. R. Donato ◽  
Ignacio Aspiazú ◽  
Alcinei M. Azevedo ◽  
Abner J. de Carvalho

Behavior analysis and plant expression are the answers the researcher needs to construct predictive models that minimize the effects of the uncertainties of field production. The objective of this study was to compare the simple and multiple linear regression methods and the artificial neural networks to allow the maximum security in the prediction of harvest in ‘Gigante’ cactus pear. The uniformity test was conducted at the Federal Institute of Bahia, Campus Guanambi, Bahia, Brazil, coordinates 14°13′30″ S, 42°46′53″ W and altitude of 525 m. At 930 days after planting, we evaluated 384 basic units, in which were measured the following variables: plant height (PH); cladode length (CL), width (CW) and thickness (CT); cladode number (CN); total cladode area (TCA); cladode area (CA) and cladode yield (Y). For the comparison between the artificial neural networks (ANN) and regression models (single and multiple-SLR and MLR), we considered the mean prediction error (MPE), the mean quadratic error (MQE), the mean square of deviation (MSD) and the coefficient of determination (R2).The values estimated by the ANN 7-5-1 showed the best proximity to the data obtained in field conditions, followed by ANN 6-2-1, MLR (TCA and CT), SLR (TCA) and SLR (CN). In this way, the ANN models with the topologies 7-2-1 and 6-2-1, MLR with the variables total cladode area and cladode thickness and SLR with the isolated descriptors total cladode area and cladode number, explain 85.1; 81.5; 76.3; 74.09 and 65.87%, respectively, of the yield variation. The ANNs were more efficient at predicting the yield of the ‘Gigante’ cactus pear when compared to the simple and multiple linear regression models.


2017 ◽  
Vol 44 (12) ◽  
pp. 994-1004 ◽  
Author(s):  
Ivica Androjić ◽  
Ivan Marović

The oscillation of asphalt mix composition on a daily basis significantly affects the achieved properties of the asphalt during production, thus resulting in conducting expensive laboratory tests to determine existing properties and predicting the future results. To decrease the amount of such tests, a development of artificial neural network and multiple linear regression models in the prediction process of predetermined dependent variables air void and soluble binder content is presented. The input data were obtained from a single laboratory and consists of testing 386 mixes of hot mix asphalt (HMA). It was found that it is possible and desirable to apply such models in the prediction process of the HMA properties. The final aim of the research was to compare results of the prediction models on an independent dataset and analyze them through the boundary conditions of technical regulations and the standard EN 13108-21.


Author(s):  
Paul J. Roebber

AbstractWe introduce an adaptive form of postprocessor where algorithm structures are neural networks where the number of hidden nodes and the network training features evolve. Key potential advantages of this system are the flexible, nonlinear mapping capabilities of neural networks and, through backpropagation, the ability to rapidly establish capable predictors in an algorithm population. The system can be implemented after one initial training process and future changes to postprocessor inputs (new observations, new inputs or model upgrades) are incorporated as they become available. As in prior work, the implementation in the form of a predator-prey ecosystem allows for the ready construction of ensembles. Computational requirements are minimal, and the use of a moving data window means that data storage requirements are constrained.The system adds predictive skill to a demonstration dynamical model representing the hemispheric circulation, with skill competitive with or exceeding that obtainable from multiple linear regression and standard artificial neural networks constructed under typical operational limitations. The system incorporates new information rapidly and the dependence of the approach on the training data size is similar to multiple linear regression. A loss of performance occurs relative to a fixed neural network architecture in which only the weights are adjusted after training, but this loss is compensated for by gains from the ensemble predictions. While the demonstration dynamical model is complex, current numerical weather prediction models are considerably more so, and thus a future step will be to apply this technique to operational weather forecast data.


Sign in / Sign up

Export Citation Format

Share Document