Near infrared hyperspectral imaging-based approach for end-of-life flat monitors recycling

2020 ◽  
Vol 68 (4) ◽  
pp. 265-276 ◽  
Author(s):  
Giuseppe Bonifazi ◽  
Riccardo Gasbarrone ◽  
Roberta Palmieri ◽  
Silvia Serranti

AbstractThe technological innovation and the relentless marketing of new electronic products with improved performance generate increasing quantities of Waste from Electrical and Electronic Equipment (WEEE). In this scenario, End-Of-Life (EOL) flat monitors and screens represent a category generating, as a consequence of the rapid change in technology, an important amount of waste. Considering future estimations, the implementation of an adequate recycling infrastructure is necessary. An efficient, reliable and low-cost analytical tool is thus needed to perform detection/control actions in order to assess: i) waste composition and ii) physical-chemical attributes of the resulting materials. The knowledge of these information is a requirement to set-up and to implement correct recycling actions.In this study, a cascade identification approach, based on Near InfraRed (NIR) – HyperSpectral Imaging (HSI), was carried out. More in detail, a four-steps classification was designed, implemented and set-up in order to recognize different materials occurring in a specific WEEE stream: EOL milled monitors and flat screens. Adopting the proposed approach, different material categories are correctly recognized and classified. Obtained results can be useful not only to set-up a quality control system, but also to improve sorting actions in this specific recycling sector.

Detritus ◽  
2020 ◽  
pp. 122-130
Author(s):  
Giuseppe Bonifazi ◽  
Riccardo Gasbarrone ◽  
Roberta Palmieri ◽  
Silvia Serranti

The number of flat monitors from televisions, notebooks and tablets has increased dramatically in recent years, thus resulting in a corresponding rise in Waste from Electrical and Electronic Equipment (WEEE). This fact is linked to the production of new high-performance electronic devices. Taking into account a future volume growth trend of WEEE, the implementation of adequate recycling architectures embedding recognition/classification logics to handle the collected WEEE physical-chemical attributes, is thus necessary. These integrated hardware and software architectures should be efficient, reliable, low cost, and capable of performing detection/control actions to assess: i) WEEE composition and ii) physical-chemical attributes of the resulting recovered flow streams. This information is fundamental in setting up and implementing appropriate recycling actions. In this study, a hierarchical classification modelling approach, based on Near InfraRed (NIR) - Hyperspectral Imaging (HSI), was carried out. More in detail, a 3-step hierarchical modelling procedure was designed, implemented and set up in order to recognize different materials present in a specific WEEE stream: End-of-Life (EoL) shredded monitors and flat screens. By adopting the proposed approach, different categories are correctly recognized. The results obtained showed how the proposed approach not only allows the set up of a “one shot” quality control system, but also contributes towards improving the sorting process.


Detritus ◽  
2021 ◽  
Author(s):  
Giuseppe Bonifazi ◽  
Riccardo Gasbarrone ◽  
Silvia Serranti

Recycling of post-consumer packaging wastes involves a complex chain of activities, usually based on three main stages, that is: i) collection from households or recovery from Municipal solid waste (MSW), ii) sorting and, finally, iii) mechanical recycling. The systematic identification of impurities inside plastic packaging waste streams, and the assessment of the different occurring materials, can be considered as one of the key issues to certify and to classify waste materials fed to recycling plants and to perform a full control of the resulting processed fractions and byproducts, that have to comply with market demands. The utilization of a Near InfraRed (NIR) – HyperSpectral Imaging (HSI) based methods, along with chemometrics and machine learning techniques, can fulfill these goals. In this paper, the HSI-based sorting logics, to apply, to implement and to set up to perform an automatic separation of paper, cardboard, plastics and multilayer packaging are investigated.


2015 ◽  
Vol 82 (12) ◽  
Author(s):  
Giuseppe Bonifazi ◽  
Roberta Palmieri ◽  
Silvia Serranti

AbstractThe recovery of materials from DW is an important target of the recycling industry and it is important to know which materials are present in order to set up efficient sorting and/or quality control actions. The implementation of an automatic recognition system of recovered products from


The Analyst ◽  
2014 ◽  
Vol 139 (19) ◽  
pp. 4924-4933 ◽  
Author(s):  
Josef Ehgartner ◽  
Helmar Wiltsche ◽  
Sergey M. Borisov ◽  
Torsten Mayr

A low cost imaging set-up for NIR-emitting optical chemical sensors for pH and oxygen based on a 2-CCD camera is presented.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4267
Author(s):  
Andrija Krtalić ◽  
Vanja Miljković ◽  
Dubravko Gajski ◽  
Ivan Racetin

This article describes the adaptation of an existing aerial hyperspectral imaging system in a low-cost setup for collecting hyperspectral data in laboratory and field environment and spatial distortion assessments. The imaging spectrometer system consists of an ImSpector V9 hyperspectral pushbroom scanner, PixelFly high performance digital CCD camera, and a subsystem for navigation, position determination and orientation of the system in space, a sensor bracket and control system. The main objective of the paper is to present the system, with all its limitations, and a spatial calibration method. The results of spatial calibration and calculation of modulation transfer function (MTF) are reported along with examples of images collected and potential uses in agronomy. The distortion value rises drastically at the edges of the image in the near-infrared segment, while the results of MTF calculation showed that the image sharpness was equal for the bands from the visible part of the spectrum, and approached Nyquist’s theory of digitalization. In the near-infrared part of the spectrum, the MTF values showed a less sharp decrease in comparison with the visible part. Preliminary image acquisition indicates that this hyperspectral system has potential in agronomic applications.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


Author(s):  
Chih-Cheng Pai ◽  
Yang-Chu Chen ◽  
Keng-Hao Liu ◽  
Yuan-Hsun Tsai ◽  
Po-Chi Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document