scholarly journals Brain–computer interface for electric wheelchair based on alpha waves of EEG signal

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kacper Banach ◽  
Mateusz Małecki ◽  
Maciej Rosół ◽  
Anna Broniec

Abstract Objectives Helping patients suffering from serious neurological diseases that lead to hindering the independent movement is of high social importance and an interdisciplinary challenge for engineers. Brain–computer interface (BCI) interfaces based on the electroencephalography (EEG) signal are not easy to use as they require time consuming multiple electrodes montage. We aimed to contribute in bringing BCI systems outside the laboratories so that it could be more accessible to patients, by designing a wheelchair fully controlled by an algorithm using alpha waves and only a few electrodes. Methods The set of eight binary words are designed, that allow to move forward, backward, turn right and left, rotate 45° as well as to increase and decrease the speed of the wheelchair. Our project includes: development of a mobile application which is used as a graphical user interface, real-time signal processing of the EEG signal, development of electric wheelchair engines control system and mechanical construction. Results The average sensitivity, without training, was 79.58% and specificity 97.08%, on persons who had no previous contact with BCI. Conclusions The proposed system can be helpful for people suffering from incurable diseases that make them closed in their bodies and for whom communication with the surrounding world is almost impossible.

2020 ◽  
Vol 08 (01) ◽  
pp. 1-11
Author(s):  
Hongyun Huang

Time is infinite movement in constant motion. We are glad to see that Neurorestoratology, a new discipline, has grown into a rich field involving many global researchers in recent years. In this 2019 yearbook of Neurorestoratology, we introduce the most recent advances and achievements in this field, including findings on the pathogenesis of neurological diseases, neurorestorative mechanisms, and clinical therapeutic achievements globally. Many patients have benefited from treatments involving cell therapies, neurostimulation/neuromodulation, brain–computer interface, neurorestorative surgery or pharmacy, and many others. Clinical physicians can refer to this yearbook with the latest knowledge and apply it to clinical practice.


Author(s):  
Alessandro B. Benevides ◽  
Mário Sarcinelli-Filho ◽  
Teodiano F. Bastos Filho

This paper presents the classification of three mental tasks, using the EEG signal and simulating a real-time process, what is known as pseudo-online technique. The Bayesian classifier is used to recognize the mental tasks, the feature extraction uses the Power Spectral Density, and the Sammon map is used to visualize the class separation. The choice of the EEG channel and sampling frequency is based on the Kullback-Leibler symmetric divergence and a reclassification model is proposed to stabilize the classifications.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 681
Author(s):  
Bor-Shyh Lin ◽  
Bor-Shing Lin ◽  
Tzu-Hsiang Yen ◽  
Chien-Chin Hsu ◽  
Yao-Chin Wang

Brain–computer interface (BCI) is a system that allows people to communicate directly with external machines via recognizing brain activities without manual operation. However, for most current BCI systems, conventional electroencephalography (EEG) machines and computers are usually required to acquire EEG signal and translate them into control commands, respectively. The sizes of the above machines are usually large, and this increases the limitation for daily applications. Moreover, conventional EEG electrodes also require conductive gels to improve the EEG signal quality. This causes discomfort and inconvenience of use, while the conductive gels may also encounter the problem of drying out during prolonged measurements. In order to improve the above issues, a wearable headset with steady-state visually evoked potential (SSVEP)-based BCI is proposed in this study. Active dry electrodes were designed and implemented to acquire a good EEG signal quality without conductive gels from the hairy site. The SSVEP BCI algorithm was also implemented into the designed field-programmable gate array (FPGA)-based BCI module to translate SSVEP signals into control commands in real time. Moreover, a commercial tablet was used as the visual stimulus device to provide graphic control icons. The whole system was designed as a wearable device to improve convenience of use in daily life, and it could acquire and translate EEG signal directly in the front-end headset. Finally, the performance of the proposed system was validated, and the results showed that it had excellent performance (information transfer rate = 36.08 bits/min).


2017 ◽  
Vol 29 (03) ◽  
pp. 1750019 ◽  
Author(s):  
Malhar Pathak ◽  
A. K. Jayanthy

Drowsiness or fatigue condition refers to feeling abnormally sleepy at an inappropriate time, especially during day time. It reduces the level of concentration and slowdown the response time, which eventually increases the error rate while doing any day-to-day activity. It can be dangerous for some people who require higher concentration level while doing their work. Study shows that 25–30% of road accidents occur due to drowsy driving. There are number of methods available for the detection of drowsiness out of which most of the methods provide an indirect measurement of drowsiness whereas electroencephalography provides the most reliable and direct measurement of the level of consciousness of the subject. The aim of this paper is to design and develop a portable and low cost brain–computer interface system for detection of drowsiness. In this study, we are using three dry electrodes out of which two active electrodes are placed on the forehead whereas the reference electrode is placed on the earlobe to acquire electroencephalogram (EEG) signal. Previous research shows that, there is a measurable change in the amplitude of theta ([Formula: see text]) wave and alpha ([Formula: see text]) wave between the active state and the drowsy state and based on this fact theta ([Formula: see text]) wave and alpha ([Formula: see text]) wave are separated from the normal EEG signal. The signal processing unit is interfaced with the microcontroller unit which is programmed to analyze the drowsiness based on the change in the amplitude of theta ([Formula: see text]) wave. An alarm will be activated once drowsiness is detected. The experiment was conducted on 20 subjects and EEG data were recorded to develop our drowsiness detection system. Experimental results have proved that our system has achieved real-time drowsiness detection with an accuracy of approximately 85%.


2014 ◽  
Vol 490-491 ◽  
pp. 1374-1377 ◽  
Author(s):  
Xiao Yan Qiao ◽  
Jia Hui Peng

It is a significant issue to accurately and quickly extract brain evoked potentials under strong noise in the research of brain-computer interface technology. Considering the non-stationary and nonlinearity of the electroencephalogram (EEG) signal, the method of wavelet transform is adopted to extract P300 feature from visual, auditory and visual-auditory evoked EEG signal. Firstly, the imperative pretreatment to EEG acquisition signals was performed. Secondly, respectivly obtained approximate and detail coefficients of each layer, by decomposing the pretreated signals for five layers using wavelet transform. Finally, the approximate coefficients of the fifth layer were reconstructed to extract P300 feature. The results have shown that the method can effectively extract the P300 feature under the different visual-auditory stimulation modes and lay a foundation for processing visual-auditory evoked EEG signals under the different mental tasks.


2013 ◽  
Vol 284-287 ◽  
pp. 1616-1621 ◽  
Author(s):  
Jzau Sgeng Lin ◽  
Sun Ming Huang

A wireless EEG-based brain-computer interface (BCI) and an FPGA-based system to control electric wheelchairs through a Bluetooth interface was proposed in this paper for paralyzed patients. Paralytic patients can not move freely and only use wheelchairs in their daily life. Especially, people getting motor neuron disease (MND) can only use their eyes and brain to exercise their willpower. Therefore, real-time EEG and winking signals can help these patients effectively. However, current BCI systems are usually complex and have to send the brain waves to a personal computer or a single-chip microcontroller to process the EEG signals. In this paper, a simple BCI system with two channels and an FPGA-based circuit for controlling DC motor can help paralytic patients easily to drive the electric wheelchair. The proposed BCI system consists of a wireless physiological with two-channel acquisition module and an FPGA-based signal processing unit. Here, the physiological signal acquisition module and signal processing unit were designed for extracting EEG and winking signals from brain waves which can directly transformed into control signals to drive the electric wheelchairs. The advantages of the proposed BCI system are low power consumption and compact size so that the system can be suitable for the paralytic patients. The experimental results showed feasible action for the proposed BCI system and drive circuit with a practical operating in electric wheelchair applications.


Sign in / Sign up

Export Citation Format

Share Document