Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry

2004 ◽  
Vol 385 (9) ◽  
pp. 853-861 ◽  
Author(s):  
Sergey Strelkov ◽  
Mirko von Elstermann ◽  
Dietmar Schomburg

AbstractAn analytical method based on gas chromatography/mass spectrometry was developed for metabolome investigation ofCorynebacterium glutamicum. For the first time a fast method for metabolic screening that can be automated is described for this organism. More than 1000 compounds could be detected per experiment, ca. 330 of those showed a peak area significantly above background. Out of these 164 compounds were identified so far, representing derivatives of 121 different metabolites, which were quantified in one sample. In spite of the different chemical nature of metabolites and high matrix content, a measurement reproducibility in the range of 6% error was achieved. The application of this method for the analysis of the adaptation ofC. glutamicumto different growth conditions is demonstrated.

1991 ◽  
Vol 46 (1-2) ◽  
pp. 111-121 ◽  
Author(s):  
W. Greenaway ◽  
J. May ◽  
T. Scaysbrook ◽  
F. R. Whatley

Abstract Propolis was analyzed by gas chromatography-mass spectrometry for both its headspace volatiles and for the less volatile components of its alcoholic extract (propolis balsam). 181 peaks were located of which 171 representing 150 compounds were identified, including 28 identified in propolis for the first time. The majority of compounds were typical of poplar bud exudate.


2021 ◽  
Vol 117 (11/12) ◽  
Author(s):  
Pabalala M. Mthembi ◽  
Ellen M. Mwenesongole ◽  
Michael D. Cole

Nyaope, a Tswana word for a mixture or ‘mish-mash’, describes a drug cocktail consisting of heroin, cannabis, and on occasion other controlled substances and warfarin. It is highly addictive with extremely unpleasant side effects caused by withdrawal from the drug. It is a problem drug especially in townships in South Africa. However, its prevalence in neighbouring southern African states and further afield is not yet known. There is currently no validated method for the analysis and comparison of nyaope. We describe a validated method for the gas chromatography – mass spectrometry analysis of nyaope so that within-batch and between-batch comparisons of nyaope can successfully be made for the first time. The validated method managed an accuracy within the range 80–120%, the precision was less than 20% for all analytes and managed linearity with R2≥0.99. The detection limits for diamorphine, efavirenz, nevirapine and Δ9-tetrahydrocannabinol were 14.2, 18.6, 18.7 and 9.94 pg on column, respectively, and the limits of quantitation were 43.1, 56.3, 56.6 and 30.1 pg on column, respectively. The simulated and casework samples were successfully discriminated into original batches using the identified nyaope components, the unsupervised chemometric methods principal component analysis and hierarchical clustering, as well as chromatographic profiles.


2021 ◽  
Vol 58 (6A) ◽  
pp. 280
Author(s):  
Hung Huy Nguyen ◽  
Dai Ngoc Do ◽  
Prabodh Satyal ◽  
Chung Thanh Nguyen ◽  
Nguyen Van Bui ◽  
...  

The essential oil from the leaves of Callicarpa arborea Roxb. growing wild in Vietnam, was obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. The major constituents of leaves of C. arborea were β-selinene (23.9%), ar-turmerone (17.5%) and α-copaene (8.9%), with lesser concentrations of caryophyllene oxide (4.9%) and ar-turmerol (3.9%). The chemical composition of this essential oil sample is being reported for the first time.


1989 ◽  
Vol 35 (7) ◽  
pp. 1394-1398 ◽  
Author(s):  
C E Jones ◽  
F H Wians ◽  
L A Martinez ◽  
G J Merritt

Abstract We developed algorithms for confirmation and identification of benzodiazepines and their metabolites, initially detected in urine samples by enzyme-multiplied immunoassay (EMIT). These algorithms are based on the pattern of benzophenone derivatives of benzodiazepines obtained by gas chromatography-mass spectrometry (GC-MS) with use of a modified specific ion selection mode. Benzophenone derivatives were produced by acid hydrolysis of urine samples containing benzodiazepines and (or) their metabolites. We present mass spectra of the newer benzodiazepines--alprazolam, midazolam, and triazolam--and we determined the detection limit (0.2 mg/L) for these drugs as measured with the EMIT d.a.u. benzodiazepine assay and the ETS instrument (both from Syva Co.). We conclude that these algorithms are useful mostly in forensic toxicology in which unequivocal identification of benzodiazepines is the desired goal.


Sign in / Sign up

Export Citation Format

Share Document