Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts

2011 ◽  
Vol 392 (5) ◽  
Author(s):  
Tatyana V. Nikitina ◽  
Lyudmila I. Tischenko ◽  
Wolfgang A. Schulz

AbstractThe products of transcription by the multisubunit enzyme RNA polymerase III (Pol III), such as 5S rRNA, tRNAs, U6 snRNA, are important for cell growth, proliferation and differentiation. The known range of the Pol III transcriptome has expanded over recent years, and novel functions of the newly discovered and already well known transcripts have been identified, including regulation of stress responses and apoptosis. Furthermore, transcription by Pol III has turned out to be strongly regulated, differing between diverse class III genes, among cell types and under stress conditions. The mechanisms involved in regulation of Pol III transcription are being elucidated and disturbances in that regulation have been implicated in various diseases, including cancer. This review summarizes the novel data on the regulation of RNA polymerase III transcription, including epigenetic and gene specific mechanisms and outlines recent insights into the cellular functions of the Pol III transcriptome, in particular of SINE RNAs.

1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158 ◽  
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


2008 ◽  
Vol 28 (8) ◽  
pp. 2598-2607 ◽  
Author(s):  
Aneeshkumar Gopalakrishnan Arimbasseri ◽  
Purnima Bhargava

ABSTRACT The genes transcribed by RNA polymerase III (Pol III) generally have intragenic promoter elements. One of them, the yeast U6 snRNA (SNR6) gene is activated in vitro by a positioned nucleosome between its intragenic box A and extragenic, downstream box B separated by ∼200 bp. We demonstrate here that the in vivo chromatin structure of the gene region is characterized by the presence of an array of positioned nucleosomes, with only one of them in the 5′ end of the gene having a regulatory role. A positioned nucleosome present between boxes A and B in vivo does not move when the gene is repressed due to nutritional deprivation. In contrast, the upstream nucleosome which covers the TATA box under repressed conditions is shifted ∼50 bp further upstream by the ATP-dependent chromatin remodeler RSC upon activation. It is marked with the histone variant H2A.Z and H4K16 acetylation in active state. In the absence of H2A.Z, the chromatin structure of the gene does not change, suggesting that H2A.Z is not required for establishing the active chromatin structure. These results show that the chromatin structure directly participates in regulation of a Pol III-transcribed gene under different states of its activity in vivo.


2006 ◽  
Vol 34 (6) ◽  
pp. 1082-1087 ◽  
Author(s):  
G.A. Kassavetis ◽  
E.P. Geiduschek

pol (RNA polymerase) III is charged with the task of transcribing nuclear genes encoding diverse small structural and catalytic RNAs. We present a brief review of the current understanding of several aspects of the pol III transcription apparatus. The focus is on yeast and, more specifically, on Saccharomyces cerevisiae; preponderant attention is given to the TFs (transcription initiation factors) and especially to TFIIIB, which is the core pol III initiation factor by virtue of its role in recruiting pol III to the transcriptional start site and its essential roles in forming the transcription-ready open promoter complex. Certain relatively recent developments are also selected for brief comment: (i) the genome-wide analysis of occupancy of pol III-transcribed genes (and other loci) by the transcription apparatus and the location of pol III transcription in the cell; (ii) progress toward a mechanistic and molecular understanding of the regulation of transcription by pol III in yeast; and (iii) recent experiments identifying a high mobility group protein as a fidelity factor that assures selection of the precise transcriptional start site at certain pol III promoters.


2001 ◽  
Vol 21 (15) ◽  
pp. 5031-5040 ◽  
Author(s):  
Krzysztof Pluta ◽  
Olivier Lefebvre ◽  
Nancy C. Martin ◽  
Wieslaw J. Smagowicz ◽  
David R. Stanford ◽  
...  

ABSTRACT Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant cells. In keeping with the higher levels of tRNA observed in vivo, the in vitro rate of Pol III RNA synthesis is significantly increased in maf1cell extracts. Mutations in the RPC160 gene encoding the largest subunit of Pol III which reduce tRNA levels were identified as suppressors of the maf1 growth defect. Interestingly, Maf1p is located in the nucleus and coimmunopurifies with epitope-tagged RNA Pol III. These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans.


2004 ◽  
Vol 24 (9) ◽  
pp. 3596-3606 ◽  
Author(s):  
Sushma Shivaswamy ◽  
George A. Kassavetis ◽  
Purnima Bhargava

ABSTRACT Transcription of the U6 snRNA gene (SNR6) in Saccharomyces cerevisiae by RNA polymerase III (pol III) requires TFIIIC and its box A and B binding sites. In contrast, TFIIIC has little or no effect on SNR6 transcription with purified components in vitro due to direct recognition of the SNR6 TATA box by TFIIIB. When SNR6 was assembled into chromatin in vitro by use of the Drosophila melanogaster S-190 extract, transcription of these templates with highly purified yeast pol III, TFIIIC, and TFIIIB displayed a near-absolute requirement for TFIIIC but yielded a 5- to 15-fold-higher level of transcription relative to naked DNA (>100-fold activation over repressed chromatin). Analysis of chromatin structure demonstrated that TFIIIC binding leads to remodeling of U6 gene chromatin, resulting in positioning of a nucleosome between boxes A and B. The resulting folding of the intervening DNA into the nucleosome could bring the suboptimally spaced SNR6 box A and B elements into greater proximity and thus facilitate activation of transcription. In the absence of ATP, however, the binding of TFIIIC to box B in chromatin was not accompanied by remodeling and the transcription activation was ∼35% of that seen in its presence, implying that both TFIIIC binding and ATP-dependent chromatin remodeling were required for the full activation of the gene. Our results suggest that TFIIIC, which is a basal transcription factor of pol III, also plays a direct role in remodeling chromatin on the SNR6 gene.


Cell ◽  
1987 ◽  
Vol 51 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Philippe Carbon ◽  
Sylvie Murgo ◽  
Jean-Pierre Ebel ◽  
Alain Krol ◽  
Graham Tebb ◽  
...  

1993 ◽  
Vol 13 (5) ◽  
pp. 2655-2665 ◽  
Author(s):  
J G Howe ◽  
M D Shu

The Epstein-Barr virus-encoded small RNA (EBER) genes are transcribed by RNA polymerase III, but their transcription unit appears to contain both class II and class III promoter elements. One of these promoter element, a TATA-like box which we call the EBER TATA box, or ETAB, is located in a position typical for a class II TATA box but contains G/C residues in the normal T/A motif and a conserved thymidine doublet. Experiments using chloramphenicol acetyltransferase constructs and mutations in the TATA box of the adenovirus major late promoter showed that the ETAB promoter element does not substitute for a class II TATA box. However, when the ETAB promoter element sequence was changed to a class II TATA box consensus sequence, the EBER 2 gene was transcribed in vitro by both RNA polymerases II and III. From these results, we conclude that the ETAB promoter element is important for the exclusive transcription of the EBER 2 gene by RNA polymerase III.


2015 ◽  
Vol 35 (10) ◽  
pp. 1848-1859 ◽  
Author(s):  
Damian Graczyk ◽  
Robert J. White ◽  
Kevin M. Ryan

Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.


2019 ◽  
Author(s):  
Matthias K. Vorländer ◽  
Florence Baudin ◽  
Robyn D. Moir ◽  
René Wetzel ◽  
Wim J. H. Hagen ◽  
...  

ABSTRACTMaf1 is a highly conserved central regulator of transcription by RNA polymerase III (Pol III), and Maf1 activity influences a wide range of phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, which establishes how Maf1 achieves transcription repression. In the Maf1-bound state, Pol III elements that are involved in transcription initiation are sequestered, and the active site is sealed off due to ordering of the mobile C34 winged helix 2 domain. Specifically, the Maf1 binding site overlaps with the binding site of the Pol III transcription factor TFIIIB and DNA in the pre-initiation complex, rationalizing that binding of Maf1 and TFIIIB to Pol III are mutually exclusive. We validate our structure using variants of Maf1 with impaired transcription-inhibition activity. These results reveal the exact mechanism of Pol III inhibition by Maf1, and rationalize previous biochemical data.


Sign in / Sign up

Export Citation Format

Share Document