Alginate Lyase Activities in the Extracts from Several Brown Algae.

1975 ◽  
Vol 18 (2) ◽  
Author(s):  
Y. Shiraiwa ◽  
K. Abe ◽  
S, F. Sasaki ◽  
T. Ikawa ◽  
K. Nisizawa
Keyword(s):  
Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 628
Author(s):  
Shu-Kun Gao ◽  
Rui Yin ◽  
Xiao-Chen Wang ◽  
Hui-Ning Jiang ◽  
Xiao-Xiao Liu ◽  
...  

Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure–substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.


2021 ◽  
Author(s):  
Qian Li ◽  
Shengsheng Cao ◽  
Ling Zheng ◽  
Benwei Zhu

Abstract BackgroundBrown algae are considered promising crops for the production of sustainable biofuels. However, its commercial application has been limited by lack of efficient methods for converting alginate into fermentable sugars. Recently, exo-type alginate lyases have received extensive attention due to their excellent ability of conversion of alginate into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH), a promising material for bioethanol production and biorefinery systems.ResultsHerein, we cloned and characterized a novel alginate lyase AlyPL17 from Pedobacter hainanensis NJ-02. It possessed outstanding catalytic efficiency towards polymannuronic acid (polyM), polyguluronic acid (polyG) and alginate sodium, with kcat of 39.42 + 1.9 s-1, 32.53 + 0.88 s-1, and 38.30 + 2.12 s-1, respectively. In addition, AlyPL17 adopts a unique hybrid action mode to degrade alginate by the synergistic effect of two domains. Furthermore, the combination of AlyPL17 and AlyPL6 exhibited apparently synergistic effect for the preparation of unsaturated monosaccharides. ConclusionOverall, the results show that AlyPL17 is a PL17 exo-type alginate lyase with high activity and a high conversion rate at low/moderate temperatures, which provides a useful enzymatic tool for the conversion of brown algae into biofuels and enhance our understanding of the function of modular domain of alginate lyase.


AMB Express ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mingpeng Wang ◽  
Lei Chen ◽  
Zhaojie Zhang ◽  
Xuejiang Wang ◽  
Song Qin ◽  
...  
Keyword(s):  

2016 ◽  
Vol 29 (1) ◽  
pp. 509-519 ◽  
Author(s):  
Ali Boucelkha ◽  
Emmanuel Petit ◽  
Redouan Elboutachfaiti ◽  
Roland Molinié ◽  
Salima Amari ◽  
...  
Keyword(s):  

Author(s):  
Jose Avila-Peltroche ◽  
Boo Yeon Won ◽  
Tae Oh Cho

Abstract Background Protoplasts (i.e., naked plant cells) can be used for in vitro manipulations and genetic improvement in cultivars with economic value. During the last decade, protoplast research in economic brown algae has been scarce, and it is usually hampered by the use of non-commercial enzymes or crude extracts for isolating protoplasts. Dictyopteris pacifica is part of a brown algal genus well known by its wide chemical diversity and biological properties. Scytosiphon lomentaria is an edible brown seaweed with antioxidant, antitumor, and antiviral properties. So far, there are no protoplast isolation protocols using commercial enzymes for these two economic brown algae. In this study, we obtained protoplasts from cultured samples of D. pacifica and S. lomentaria using commercially available enzymes. Additionally, we investigated the effects of Driselase inclusion and Ca-chelation pre-treatment on protoplast yields in order to optimize the conditions for protoplast preparations. Results Protoplasts were isolated from Dictyopteris pacifica and Scytosiphon lomentaria using the commercially available Cellulase Onozuka RS (1%) and Alginate lyase (4 U mL−1), and short incubation time (4 h). Driselase did not show significant effects on protoplast production in both species. Ca-chelation pre-treatment only increased the number of protoplasts in D. pacifica. Under optimal conditions, the protoplast yields from D. pacifica and S. lomentaria were 4.83 ± 2.08 and 74.64 ± 32.49 × 106 protoplasts g−1 fresh weight, respectively. The values obtained for S. lomentaria were 2–3 orders of magnitude higher than previously reported. Conclusions Our results show that high protoplast yields can be obtained from D. pacifica and S. lomentaria using a simple mixture of commercial enzymes (Cellulase RS and Alginate lyase) and short incubation time (4 h). This work also represents the first report of protoplast isolation in D. pacifica. The method proposed here can help to expand protoplast technology in more brown algal species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bo Pilgaard ◽  
Casper Wilkens ◽  
Florian-Alexander Herbst ◽  
Marlene Vuillemin ◽  
Nanna Rhein-Knudsen ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8402
Author(s):  
Fengchao Zhang ◽  
Zheng Fu ◽  
Luyao Tang ◽  
Zhelun Zhang ◽  
Feng Han ◽  
...  

Brown algae is a kind of renewable resource for biofuels production. As the major component of carbohydrate in the cell walls of brown algae, alginate can be degraded into unsaturated monosaccharide by exo-type alginate lyases, then converted into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH) by a non-enzyme reaction, which is an important raw material for the preparation of bioethanol. In our research, a novel exo-type alginate lyase, VsAly7D, belonging to the PL7 family was isolated from marine bacterium Vibrio sp. QY108 and recombinantly expressed in Escherichia coli. The purified VsAly7D demonstrated the highest activity at 35 °C, whereas it still maintained 46.5% and 83.1% of its initial activity at 20 °C and 30 °C, respectively. In addition, VsAly7D exhibited the maximum activity under alkaline conditions (pH 8.0), with the simultaneously remaining stability between pH 8.0 and 10.0. Compared with other reported exo-type enzymes, VsAly7D could efficiently degrade alginate, poly-β-D-mannuronate (polyM) and poly-α-L-guluronate (polyG) with highest specific activities (663.0 U/mg, 913.6 U/mg and 894.4 U/mg, respectively). These results showed that recombinant VsAly7D is a suitable tool enzyme for unsaturated alginate monosaccharide preparation and holds great promise for producing bioethanol from brown algae.


Sign in / Sign up

Export Citation Format

Share Document