scholarly journals Comparative study of fault-tolerant performance of a segmented rotor SRM and a conventional SRM

2017 ◽  
Vol 65 (3) ◽  
pp. 375-381 ◽  
Author(s):  
X. Sun ◽  
Z. Xue ◽  
S. Han ◽  
L. Chen ◽  
X. Xu ◽  
...  

AbstractDue to the separation of magnetic field, electrical isolation and thermal isolation, motor drives possess a high fault-tolerance characteristic. In this paper, comparative study of mutual inductance between the proposed segmented rotor switched reluctance motor (SSRM) and the conventional switched reluctance motor (SRM) is carried out first, illustrating that the proposed SSRM has less mutual inductance between phases than the conventional SRM. In addition, if winding faults or power converter faults lead to phase failure, a comparative analysis on fault-tolerant performance under phase failure condition between the proposed SSRM and the conventional SRM is simulated in detail using the finite element method (FEM). Simulation results reveal that dynamic performance of the proposed SSRM, including output torque and phase current, is better than that of the conventional SRM. That is, the capacity of operating with the fault under phase failure condition in the proposed SSRM is superior to that in the conventional SRM.

Author(s):  
Xiaodong Sun ◽  
Jiangling Wu ◽  
Shaohua Wang ◽  
Kaikai Diao ◽  
Zebin Yang

Purpose The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work. Design/methodology/approach The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM. Findings It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems. Originality/value This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.


Sign in / Sign up

Export Citation Format

Share Document