scholarly journals Cod Fractions In Mechanical-Biological Wastewater Treatment Plant

2017 ◽  
Vol 24 (1) ◽  
pp. 207-217 ◽  
Author(s):  
Ewelina Płuciennik-Koropczuk ◽  
Anita Jakubaszek ◽  
Sylwia Myszograj ◽  
Sylwia Uszakiewicz

Abstract The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2004 ◽  
Author(s):  
Al-Mashaqbeh ◽  
Alsafadi ◽  
Dalahmeh ◽  
Bartelt-Hunt ◽  
Snow

The largest wastewater treatment plant in Jordan was monitored in the summer to determine the removal of pharmaceuticals and personal care products (PPCPs). Grab samples were collected from the influent and effluent of As-Samra Wastewater Treatment Plant (WWTP). Liquid chromatography and tandem mass spectrometry (LC–MS/MS) were utilized to determine the concentrations of 18 compounds of pharmaceuticals and personal care products (PPCPs). The results showed that 14 compounds were detected in the collected samples from the influent and effluent of As-Samra WWTP. These compounds are 1,7-dimethylxanthine, amphetamine, acetaminophen, caffeine, carbamazepine, cimetidine, cotinine, diphenhydramine, methylenedioxymethamphetamine (MDMA), morphine, phenazone, sulfamethazine, sulfamethoxazole, thiabendazole, and trimethoprim. However, four compounds were below the detection limit (<0.005 µg/L), namely cimetidine, methylenedioxyamphetamine (MDA), methamphetamine, and sulfachloropyridazine. Among PPCPs, the highest estimated average concentrations in raw wastewater were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine, and carbamazepine sampled during the summer, at an estimated concentration of 155.6 µg/L, 36.7 µg/L, 10.49 µg/L, and 1.104 µg/L, respectively. However, the highest estimated average concentrations in treated wastewater were for carbamazepine, sulfamethoxazole, caffeine, cotinine, and acetaminophen, at 0.856 µg/L, 0.096 µg/L, 0.086 µg/L, 0.078 µg/L, and 0.041 µg/L, respectively. In general, the results showed that some compounds in the collected samples of wastewater in Jordan have concentrations exceeding the values reported in the literature. The removal efficiency rates of 1,7-dimethylxanthine, acetaminophen, caffeine, cotinine, morphine, and trimethoprim were higher than 95%, while those of carbamazepine, sulfamethazine, and sulfamethoxazole were lower than 22.5%. Moreover, diphenhydramine and thiabendazole had negative removal efficiency rates. The removal efficiency rates of the PPCPs in As-Samra WWTP were generally consistent with those of indicator compounds reported in the literature for conventional WWTPs.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


2013 ◽  
Vol 68 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Wanhui Zhang ◽  
Chaohai Wei ◽  
Chunhua Feng ◽  
Yuan Ren ◽  
Yun Hu ◽  
...  

The occurrence of 14 phenolic compounds (PCs) was assessed in the raw, treated wastewater, dewatered sludge and gas samples from a coking wastewater treatment plant (WWTP) in China. It was found that 3-cresol was the dominant compound in the raw coking wastewater with a concentration of 183 mg L−1, and that chlorophenols and nitrophenols were in the level of μg L−1. Phenol was the dominant compound in the gas samples, while 2,4,6-trichlorophenol predominated in the dewatered sludge sample. The anaerobic and aerobic tanks played key roles in the elimination of chlorophenols and phenols, respectively. Analysis of daily mass flows of PCs in WWTP showed that 89–98% of phenols and 83–89% of nitrophenols were biodegraded, and that 44–69% of chlorophenols were adsorbed to sludge, indicating that the fate of PCs was highly influenced by their biodegradability and physical–chemical property.


2002 ◽  
Vol 2002 (17) ◽  
pp. 142-151
Author(s):  
Alan F. Rozich ◽  
Christian D. Hahn ◽  
Walter Wujcik ◽  
Charles Evans ◽  
Christopher Bialecki

Sign in / Sign up

Export Citation Format

Share Document