Analogue-Based Drug Discovery: Contributions to Medicinal Chemistry Principles and Drug Design Strategies. Microtubule Stabilizers as a Case in Point (special topic article)

2012 ◽  
Vol 34 (5) ◽  
2012 ◽  
Vol 84 (7) ◽  
pp. 1479-1542 ◽  
Author(s):  
Mohammad H. El-Dakdouki ◽  
Paul W. Erhardt

The benefits of utilizing marketed drugs as starting points to discover new therapeutic agents have been well documented within the IUPAC series of books that bear the title Analogue-based Drug Discovery (ABDD). Not as clearly demonstrated, however, is that ABDD also contributes to the elaboration of new basic principles and alternative drug design strategies that are useful to the field of medicinal chemistry in general. After reviewing the ABDD programs that have evolved around the area of microtubule-stabilizing chemo-therapeutic agents, the present article delineates the associated research activities that additionally contributed to general strategies that can be useful for prodrug design, identifying pharmacophores, circumventing multidrug resistance (MDR), and achieving targeted drug distribution.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7500
Author(s):  
Marco Tutone ◽  
Anna Maria Almerico

To date, computational approaches have been recognized as a key component in drug design and discovery workflows [...]


2018 ◽  
Vol 14 ◽  
pp. 772-785 ◽  
Author(s):  
Kartik Temburnikar ◽  
Katherine L Seley-Radtke

C-nucleosides have intrigued biologists and medicinal chemists since their discovery in 1950's. In that regard, C-nucleosides and their synthetic analogues have resulted in promising leads in drug design. Concurrently, advances in chemical syntheses have contributed to structural diversity and drug discovery efforts. Convergent and modular approaches to synthesis have garnered much attention in this regard. Among them nucleophilic substitution at C1' has seen wide applications providing flexibility in synthesis, good yields, the ability to maneuver stereochemistry as well as to incorporate structural modifications. In this review, we describe recent reports on the modular synthesis of C-nucleosides with a focus on D-ribonolactone and sugar modifications that have resulted in potent lead molecules.


2009 ◽  
Vol 9 (9) ◽  
pp. 771-790 ◽  
Author(s):  
Adriano Andricopulo ◽  
Lívia Salum ◽  
Donald Abraham

2020 ◽  
Author(s):  
Yuyao Yang ◽  
Shuangjia Zheng ◽  
Shimin Su ◽  
Jun Xu ◽  
Hongming Chen

Fragment based drug design represents a promising drug discovery paradigm complimentary to the traditional HTS based lead generation strategy. How to link fragment structures to increase compound affinity is remaining a challenge task in this paradigm. Hereby a novel deep generative model (AutoLinker) for linking fragments is developed with the potential for applying in the fragment-based lead generation scenario. The state-of-the-art transformer architecture was employed to learn the linker grammar and generate novel linker. Our results show that, given starting fragments and user customized linker constraints, our AutoLinker model can design abundant drug-like molecules fulfilling these constraints and its performance was superior to other reference models. Moreover, several examples were showcased that AutoLinker can be useful tools for carrying out drug design tasks such as fragment linking, lead optimization and scaffold hopping.


2019 ◽  
Vol 24 (32) ◽  
pp. 3829-3841 ◽  
Author(s):  
Lakshmanan Loganathan ◽  
Karthikeyan Muthusamy

Worldwide, colorectal cancer takes up the third position in commonly detected cancer and fourth in cancer mortality. Recent progress in molecular modeling studies has led to significant success in drug discovery using structure and ligand-based methods. This study highlights aspects of the anticancer drug design. The structure and ligand-based drug design are discussed to investigate the molecular and quantum mechanics in anti-cancer drugs. Recent advances in anticancer agent identification driven by structural and molecular insights are presented. As a result, the recent advances in the field and the current scenario in drug designing of cancer drugs are discussed. This review provides information on how cancer drugs were formulated and identified using computational power by the drug discovery society.


2014 ◽  
Vol 14 (7) ◽  
pp. 941-951 ◽  
Author(s):  
Gregory Landelle ◽  
Armen Panossian ◽  
Frederic Leroux

Sign in / Sign up

Export Citation Format

Share Document