scholarly journals A modified Fourier solution for vibration analysis of moderately thick laminated annular sector plates with general boundary conditions, internal radial line and circumferential arc supports

2017 ◽  
Vol 4 (1) ◽  
pp. 189-220 ◽  
Author(s):  
Fuzhen Pang ◽  
Haichao Li ◽  
Xuhong Miao ◽  
Xueren Wang

Abstract In this paper, a modified Fourier solution based on the first-order shear deformation theory is developed for the free vibration problem of moderately thick composite laminated annular sector plates with general boundary conditions, internal radial line and circumferential arc supports. In this solution approach, regardless of boundary conditions, the displacement and rotation components of the sector plate are written in the form of the trigonometric series expansion in which several auxiliary terms are added to ensure and accelerate the convergence of the series. Each of the unknown coefficients is taken as the generalized coordinate and determined using the Raleigh- Ritz method. The accuracy and reliability of the present solution are validated by the comparison with the results found in the literature, and numerous new results for composite laminated annular sector plates considering various kinds of boundary conditions are presented. Comprehensive studies on the effects of elastic restraint parameters, layout schemes and locations of line/arc supports are also made.New results are obtained for laminated annular sector plates subjected to elastic boundary restraints and arbitrary internal radial line and circumferential arc supports in both directions, and they may serve as benchmark solutions for future researches.

Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Bing Hu ◽  
Cong Gao ◽  
Hang Zhang ◽  
Haichao Li ◽  
Fuzhen Pang ◽  
...  

In this paper, the Ritz method is adopted to investigate the vibration characteristics of isotropic moderately thick annular spherical shell with general boundary conditions. The energy expressions of the annular spherical shell were established based on the first-order shear deformation theory (FSDT). The spring stiffness method is introduced to guarantee continuity and simulate various boundary conditions on the basis of the domain decomposition method. Under the current framework, the displacement admissible function along axial direction and circumferential direction of the shell structure are, respectively, expanded as the unified Jacobi polynomials and Fourier series. The final solutions can be obtained according to the Ritz method. The validity of the proposed method is proved by comparing the results of the same condition with those obtained by the finite element method (FEM) and published literatures. The results show that the current method has fast convergence and delightful accuracy through the comparative study. On this basis, the vibration characteristics of isotropic moderately thick annular spherical shell are further studied by a series of numerical examples.


Author(s):  
J. Lu ◽  
X. Hua ◽  
C. Chiu ◽  
X. Zhang ◽  
S. Li ◽  
...  

The porous material is an emerging lightweight material, which is able to reduce structural weight and also keeps the superiority of the structure. Therefore, this work is devoted to the investigation of the functionally graded porous (FGP) annular and circular plates with general boundary conditions. The unified modeling method is proposed by combining the first-order shear deformation theory, the virtual spring technology, the multi-segment partition method, and the semi-analysis Rayleigh–Ritz approach. Afterwards, the convergency and correctness of the proposed method are verified, respectively. The frequency parameters, modal shapes, and forced vibration responses are uniformly calculated based on the proposed method. Finally, the dynamic analyses of the FGP annular and circular plates with different parameters, such as the porosity distribution types, porosity ratios, boundary condition types, geometry parameters, and load types, are conducted in detail. It is found that the reasonable porous design is able to keep the dynamic stability of the structure under different parameter variations.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Dongyan Shi ◽  
Shuai Zha ◽  
Hong Zhang ◽  
Qingshan Wang

The free vibration analysis of the functionally graded (FG) double curved shallow shell structures with general boundary conditions is investigated by an improved Fourier series method (IFSM). The material properties of FG structures are assumed to vary continuously in the thickness direction, according to the four graded parameters of the volume distribution function. Under the current framework, the displacement and rotation functions are set to a spectral form, including a double Fourier cosine series and two supplementary functions. These supplements can effectively eliminate the discontinuity and jumping phenomena of the displacement function along the edges. The formulation is based on the first-order shear deformation theory (FSDT) and Rayleigh-Ritz technique. This method can be universally applied to the free vibration analysis of the shallow shell, because it only needs to change the relevant parameters instead of modifying the basic functions or adapting solution procedures. The proposed method shows excellent convergence and accuracy, which has been compared with the results of the existing literatures. Numerous new results for free vibration analysis of FG shallow shells with various boundary conditions, geometric parameter, material parameters, gradient parameters, and volume distribution functions are investigated, which may serve as the benchmark solution for future researches.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Berkan Alanbay ◽  
Karanpreet Singh ◽  
Rakesh K. Kapania

Abstract This paper presents a general approach for the free vibration analysis of curvilinearly stiffened rectangular and quadrilateral plates using the Ritz method by employing classical orthogonal Jacobi polynomials. Both the plate and stiffeners are modeled using first-order shear deformation theory (FSDT). The displacement and rotations of the plate and stiffeners are approximated by separate sets of Jacobi polynomials. The ease of modification of the Jacobi polynomials enables the Jacobi weight function to satisfy geometric boundary conditions without loss of orthogonality. The distinctive advantage of Jacobi polynomials, over other polynomial-based trial functions, lies in that their use eliminates the well-known ill-conditioning issues when a high number of terms are used in the Ritz method, e.g., to obtain higher modes required for vibro-acoustic analysis. In this paper, numerous case studies are undertaken by considering various sets of boundary conditions. The results are verified both with the detailed finite element analysis (FEA) using commercial software msc.nastran and with those available in the open literature. New formulation and results include: (i) exact boundary condition enforcement through Jacobi weight function for FSDT, (ii) formulation of quadrilateral plates with curvilinear stiffeners, and (iii) use of higher order Gauss quadrature scheme for required integral evaluations to obtain higher modes. It is demonstrated that the presented method provides good numerical stability and highly accurate results. The given new numerical results and convergence studies may serve as benchmark solutions for validating the new computational techniques.


2018 ◽  
Vol 38 (1) ◽  
pp. 110-121
Author(s):  
Zhuang Lin ◽  
Shuangxia Shi

This paper presents a three-dimensional formulation for the free vibrations of thick rectangular plates with general boundary conditions and resting on elastic foundations. The general boundary conditions are imposed by means of penalty function method. The displacements of the plates are expressed by a three-dimensional cosine series and some simple polynomial functions which introduced to ensure and accelerate the convergence of the series representation. All the unknown coefficients can be obtained by using the Rayleigh–Ritz method. Comparisons of the present results with those in available literature demonstrate the accuracy and reliability of the present formulation. Furthermore, parametric investigations are presented including the effects of boundary conditions, geometrical parameters, and elastic foundation.


2019 ◽  
Vol 6 (1) ◽  
pp. 117-131
Author(s):  
Yuan Du ◽  
Haichao Li ◽  
Qingtao Gong ◽  
Fuzhen Pang ◽  
Liping Sun

AbstractBased on the classical Kirchhoff hypothesis, the dynamic response and sound radiation of rectangular thin plates with general boundary conditions are studied. The transverse displacements of plate are represented by a double Fourier cosine series and three supplementary functions. The potential discontinuity associated with the original governing equation can be transferred to auxiliary series functions. All kinds of boundary conditions can be easily achieved by varying stiffness value of springs on each edge. The natural frequencies and vibration response of the plates are obtained by means of the Rayleigh–Ritz method. Sound radiation characteristics of the plate are derived using Rayleigh integral formula. Current method works well when handling dynamic response and sound radiation of plates with general boundary conditions. The accuracy and reliability of current method are confirmed by comparing with related literature and FEM. The non-dimensional frequency parameters of the rectangular plates with different boundary conditions and aspect ratios are presented in the paper, which may be useful for future researchers.Meanwhile, some interesting points are foundwhen analyzing acoustic radiation characteristics of plates.


2020 ◽  
Vol 17 (1) ◽  
pp. 1-17
Author(s):  
Ali Sadik Gafer Qanber ◽  
Raed Salman Saeed Alhusseini ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
Mehdi Ranjbar

PurposeThe main objective of this article is to develop a theoretical formulation for predicting the response of CNTs reinforced beam under multiple impactors with general boundary conditions, using first-order shear deformation beam theory.Design/methodology/approachThe rule of mixtures is implemented to derive the material properties of the beam. The nonlinear Hertz contact law is applied for simulation between impactors and the surface of the beam. A combination of approaches includes energy method, Ritz method and generalized Lagrange equations are used to extract the matrix form of equations of motion. The time-domain solution is obtained using implementing the well-known Runge Kutta 4th order method.FindingsAfter examining the accuracy of the present method, the effects of the number of impactors include one impactor, and three impactors in various CNTs volume fraction are studied for CNTs reinforced beam with clamped-clamped, clamped-free and simply supported boundary conditions under the low-velocity impact. The most important finding of this article is that contact force and beam indentation at the middle of the beam in the case of one impactor are greater than those reported in the case of three impactors.Originality/valueThis article fulfills an identified need to study how CNTs reinforced beam behaviour with general boundary conditions under multiple low-velocity impacts can be enabled.


Sign in / Sign up

Export Citation Format

Share Document