scholarly journals Upgrading Probability via Fractions of Events

2016 ◽  
Vol 24 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Roman Frič ◽  
Martin Papčo

Abstract The influence of “Grundbegriffe” by A. N. Kolmogorov (published in 1933) on education in the area of probability and its impact on research in stochastics cannot be overestimated. We would like to point out three aspects of the classical probability theory “calling for” an upgrade: (i) classical random events are black-and-white (Boolean); (ii) classical random variables do not model quantum phenomena; (iii) basic maps (probability measures and observables { dual maps to random variables) have very different “mathematical nature”. Accordingly, we propose an upgraded probability theory based on Łukasiewicz operations (multivalued logic) on events, elementary category theory, and covering the classical probability theory as a special case. The upgrade can be compared to replacing calculations with integers by calculations with rational (and real) numbers. Namely, to avoid the three objections, we embed the classical (Boolean) random events (represented by the f0; 1g-valued indicator functions of sets) into upgraded random events (represented by measurable {0; 1}-valued functions), the minimal domain of probability containing “fractions” of classical random events, and we upgrade the notions of probability measure and random variable.

Author(s):  
NORIYOSHI SAKUMA

In this paper, we firstly characterize the class of free self-decomposable distributions as a class of limiting distributions of suitably normalized partial sums of free independent random variables. Secondly, we introduce nested classes between the class of free self-decomposable distributions and that of free stable distributions, characterize them and show that the limit of the nested classes coincides with the closure of the class of free stable distributions. All results here are analogues of the results known in classical probability theory.


2002 ◽  
Vol 17 (12) ◽  
pp. 711-728 ◽  
Author(s):  
ROBERTO B. SALGADO

After a brief review of classical probability theory (measure theory), we present an observation (due to Sorkin) concerning an aspect of probability in quantum mechanics. Following Sorkin, we introduce a generalized measure theory based on a hierarchy of "sum-rules". The first sum-rule yields classical probability theory, and the second yields a generalized probability theory that includes quantum mechanics as a special case. We present some algebraic relations involving these sum-rules. This may be useful for the study of the higher-order sum-rules and possible generalizations of quantum mechanics. We conclude with some open questions and suggestions for further work.


2018 ◽  
Vol 47 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Jalal Chachi

In this paper, rst a new notion of fuzzy random variables is introduced. Then, usingclassical techniques in Probability Theory, some aspects and results associated to a randomvariable (including expectation, variance, covariance, correlation coecient, etc.) will beextended to this new environment. Furthermore, within this framework, we can use thetools of general Probability Theory to dene fuzzy cumulative distribution function of afuzzy random variable.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years Man’ko and co-authors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely that mathematically the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
pp. 31-92
Author(s):  
Jochen Rau

This chapter explains the approach of ‘operationalism’, which in a physical theory admits only concepts associated with concrete experimental procedures, and lays out its consequences for propositions about measurements, their logical structure, and states. It illustrates these with toy examples where the ability to perform measurements is limited by design. For systems composed of several constituents this chapter introduces the notions of composite and reduced states, statistical independence, and correlations. It examines what it means for multiple systems to be prepared identically, and how this is represented mathematically. The operational requirement that there must be procedures to measure and prepare a state is examined, and the ensuing constraints derived. It is argued that these constraint leave only one alternative to classical probability theory that is consistent, universal, and fully operational, namely, quantum theory.


2019 ◽  
Vol 52 (2) ◽  
pp. 157-186
Author(s):  
Adam Burchardt

Abstract Cumulants are a notion that comes from the classical probability theory; they are an alternative to a notion of moments. We adapt the probabilistic concept of cumulants to the setup of a linear space equipped with two multiplication structures. We present an algebraic formula which involves those two multiplications as a sum of products of cumulants. In our approach, beside cumulants, we make use of standard combinatorial tools as forests and their colourings. We also show that the resulting statement can be understood as an analogue of Leonov–Shiryaev’s formula. This purely combinatorial presentation leads to some conclusions about structure constant of Jack characters.


2013 ◽  
Vol 36 (3) ◽  
pp. 279-280 ◽  
Author(s):  
Christina Behme

AbstractI argue that the overly simplistic scenarios discussed by Pothos & Busemeyer (P&B) establish at best that quantum probability theory (QPT) is a logical possibility allowing distinct predictions from classical probability theory (CPT). The article fails, however, to provide convincing evidence for the proposal that QPT offers unique insights regarding cognition and the nature of human rationality.


2020 ◽  
Vol 39 (3) ◽  
pp. 2647-2655
Author(s):  
Naidan Feng ◽  
Yongquan Liang

 Aiming at the imprecise and uncertain data and knowledge, this paper proposes a novel prior assumption by the rough set theory. The performance of the classical Bayesian classifier is improved through this study. We applied the operations of approximations to represent the imprecise knowledge accurately, and the concept of approximation quality is first applied in this method. Thus, this paper provides a novel rough set theory based prior probability in classical Bayesian classifier and the corresponding rough set prior Bayesian classifier. And we chose 18 public datasets to evaluate the performance of the proposed model compared with the classical Bayesian classifier and Bayesian classifier with Dirichlet prior assumption. Sufficient experimental results verified the effectiveness of the proposed method. The mainly impacts of our proposed method are: firstly, it provides a novel methodology which combines the rough set theory with the classical probability theory; secondly, it improves the accuracy of prior assumptions; thirdly, it provides an appropriate prior probability to the classical Bayesian classifier which can improve its performance only by improving the accuracy of prior assumption and without any effect to the likelihood probability; fourthly, the proposed method provides a novel and effective method to deal with the imprecise and uncertain data; last but not least, this methodology can be extended and applied to other concepts of classical probability theory, which providing a novel methodology to the probability theory.


Sign in / Sign up

Export Citation Format

Share Document