scholarly journals Equal-Order Stabilized Finite Element Approximation of the p-Stokes Equations on Anisotropic Cartesian Meshes

2020 ◽  
Vol 20 (1) ◽  
pp. 1-25
Author(s):  
Josefin Ahlkrona ◽  
Malte Braack

AbstractThe p-Stokes equations with power-law exponent {p\in(1,2)} describes non-Newtonian, shear-thinning, incompressible flow. In many industrial applications and natural settings, shear-thinning flow takes place in very thin domains. To account for such anisotropic domains in simulations, we here study an equal-order bi-linear anisotropic finite element discretization of the p-Stokes equations, and extend a non-linear Local Projection Stabilization to anisotropic meshes. We prove an a priori estimate and illustrate the results with two numerical examples, one confirming the rate of convergence predicted by the a-priori analysis, and one showing the advantages of an anisotropic stabilization compared to an isotropic one.

2006 ◽  
Vol 16 (02) ◽  
pp. 233-263 ◽  
Author(s):  
Z. BELHACHMI ◽  
C. BERNARDI ◽  
S. DEPARIS ◽  
F. HECHT

We consider the Stokes problem in a three-dimensional axisymmetric domain and, by writing the Fourier expansion of its solution with respect to the angular variable, we observe that each Fourier coefficient satisfies a system of equations on the meridian domain. We propose a discretization of this problem which combines Fourier truncation and finite element methods applied to each of the two-dimensional systems. We give the detailed a priori and a posteriori analyses of the discretization and present some numerical experiments which are in good agreement with the analysis.


Author(s):  
Marita Holtmannspötter

In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of a quasilinear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of two quasilinear elliptic PDEs which have to be fulfilled at almost all times coupled with a nonsmooth, semilinear ODE that has to hold true in almost all points in space. The system is discretized by a constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. Numerical experiments are added to illustrate the proven rates of convergence.


Author(s):  
R. Becker ◽  
R. Koch ◽  
M. F. Modest ◽  
H.-J. Bauer

The present article introduces a new method to solve the radiative transfer equation (RTE). First, a finite element discretization of the solid angle dependence is derived, wherein the coefficients of the finite element approximation are functions of the spatial coordinates. The angular basis functions are defined according to finite element principles on subdivisions of the octahedron. In a second step, these spatially dependent coefficients are discretized by spatial finite elements. This approach is very attractive, since it provides a concise derivation for approximations of the angular dependence with an arbitrary number of angular nodes. In addition, the usage of high-order angular basis functions is straightforward. In the current paper the governing equations are first derived independently of the actual angular approximation. Then, the design principles for the angular mesh are discussed and the parameterization of the piecewise angular basis functions is derived. In the following, the method is applied to two-dimensional test cases which are commonly used for the validation of approximation methods of the RTE. The results reveal that the proposed method is a promising alternative to the well-established practices like the Discrete Ordinates Method (DOM) and provides highly accurate approximations. A test case known to exhibit the ray effect in the DOM verifies the ability of the new method to avoid ray effects.


2004 ◽  
Vol 14 (04) ◽  
pp. 603-618 ◽  
Author(s):  
ADRIAN DUNCA ◽  
VOLKER JOHN

This paper analyzes finite element approximations of space averaged flow fields which are given by filtering, i.e. averaging in space, the solution of the steady state Stokes and Navier–Stokes equations with a differential filter. It is shown that [Formula: see text], the error of the filtered velocity [Formula: see text] and the filtered finite element approximation of the velocity [Formula: see text], converges under certain conditions of higher order than [Formula: see text], the error of the velocity and its finite element approximation. It is also proved that this statement stays true if the L2-error of finite element approximations of [Formula: see text] and [Formula: see text] is considered. Numerical tests in two and three space dimensions support the analytical results.


Sign in / Sign up

Export Citation Format

Share Document