scholarly journals Catalytic myrtenol amination over gold, supported on alumina doped with ceria and zirconia

2018 ◽  
Vol 5 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Yu.S. Demidova ◽  
I.L. Simakova ◽  
E.V. Suslov ◽  
K.P. Volcho ◽  
N.F. Salakhutdinov ◽  
...  

Abstract In the current work gold catalysts supported on both commercial oxides and oxides synthesized by the sol-gel method were used for the one-pot alcohol amination of myrtenol. In general, utilization of metal oxides synthesized by the sol-gel method as the gold catalyst support enhanced the knowledge regarding key parameters determining catalytic behavior. Synthesized alumina was characterized by stronger acid sites favoring primary amine accumulation on the catalyst surface, as compared to the commercial oxide. Utilization of mixed metal oxides synthesized by the sol-gel method resulted in the non-additive behavior of different oxides enhancing the catalytic activity. Introduction of ceria into alumina modified the support basicity resulting in more efficient alcohol activation.

2006 ◽  
Vol 17 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Hugo B. Suffredini ◽  
Giancarlo R. Salazar-Banda ◽  
Sônia T. Tanimoto ◽  
Marcelo L. Calegaro ◽  
Sergio A. S. Machado ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 475
Author(s):  
Yabin Wei ◽  
Shuangling Jin ◽  
Rui Zhang ◽  
Weifeng Li ◽  
Jiangcan Wang ◽  
...  

Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.


2011 ◽  
Vol 58 (2) ◽  
pp. 535-538 ◽  
Author(s):  
Marauo Davis ◽  
Cenk Gümeci ◽  
Courtney Kiel ◽  
Louisa J. Hope-Weeks

2015 ◽  
Vol 39 (12) ◽  
pp. 9380-9388 ◽  
Author(s):  
Haifeng Gong ◽  
Junjiang Zhu ◽  
Kangle Lv ◽  
Ping Xiao ◽  
Yanxi Zhao

Co3O4 templated from mesoporous silica show stable and better activity for CO oxidation than that synthesized by the traditional sol–gel method.


2011 ◽  
Vol 102 (3-4) ◽  
pp. 387-394 ◽  
Author(s):  
Maria Turco ◽  
Giovanni Bagnasco ◽  
Claudia Cammarano ◽  
Luca Micoli ◽  
Maurizio Lenarda ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Yuxin Chen ◽  
Dan Dang ◽  
Binhang Yan ◽  
Yi Cheng

Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.


2021 ◽  
Author(s):  
Sreejith Sreekantan ◽  
Arun Arunima Kirali ◽  
Banu Marimuthu

The mesopores/micropores NaZSM-5 was synthesised by sol–gel method. The 5%Al–8%Ni–25%W/NaZSM-5 catalyst exhibited the highest cellulose conversion of 100% with EG yield as high as 89% (C mol%) at moderate reaction conditions which is highly applicable in polymer Industry.


Sign in / Sign up

Export Citation Format

Share Document