P-Glycoprotein- and cytochrome P-450-mediated herbal drug interactions

2010 ◽  
Vol 25 (1-4) ◽  
Author(s):  
Yamsani Shravan Kumar ◽  
Devandla Adukondalu ◽  
Dharani Sathish ◽  
Yamsani Vamshi Vishnu ◽  
Gannu Ramesh ◽  
...  
Author(s):  
Taiji Miyake ◽  
Haruka Tsutsui ◽  
Kenta Haraya ◽  
Tatsuhiko Tachibana ◽  
Kayoko Morimoto ◽  
...  

2006 ◽  
Vol 26 (11) ◽  
pp. 1601-1607 ◽  
Author(s):  
Carol W Holtzman ◽  
Barbara S Wiggins ◽  
Sarah A Spinler

Author(s):  
Chetan S. Karyekar ◽  
Natalie D. Eddington ◽  
Tushar S. Garimella ◽  
Paul O. Gubbins ◽  
Thomas C. Dowling

1983 ◽  
Vol 17 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Eugene M. Sorkin ◽  
Diane L. Darvey

The literature on cimetidine drug interactions has been thoroughly reviewed. Several different mechanisms have been proposed for cimetidine-related drug interactions. These mechanisms include: (1) impaired hepatic drug metabolism due to inhibition of hepatic microsomal enzymes, (2) reduced hepatic blood flow, resulting in decreased clearance of drugs that are highly extracted by the liver, (3) increased potential for myelosuppression when administered concurrently with other drugs capable of causing myelosuppression, and (4) altered bioavailability of acid-labile drugs. Cimetidine binds reversibly to the hepatic cytochrome P-450 and P-448 systems, resulting in decreased metabolism of drugs that undergo Phase I reactions (e.g., dealkylation and hydroxylation). In contrast, glucuronidation pathways are unaffected. The rapid onset and reversal of cimetidine's inhibition of hepatic metabolism indicates an effect on hepatic enzyme systems. Cimetidine also has been reported to decrease hepatic blood flow. Drugs that are highly extracted by the liver, such as propranolol, lidocaine, and morphine, may be postulated to have a decreased hepatic clearance. Cimetidine, through its effect on gastric pH, may increase the absorption of acid-labile drugs or may decrease the absorption of drugs. There have been reports of increased potential for myelosuppression when cimetidine is administered concurrently with drugs capable of causing bone marrow suppression. An understanding of the mechanisms involved in cimetidine drug interactions allows the clinician to prevent and predict these interactions.


2021 ◽  
Vol 22 ◽  
Author(s):  
Rajkapoor Balasubramanian ◽  
Naina Mohamed Pakkir Maideen

Background: Hydroxymethyl glutaryl-CoA (HMG-CoA) reductase inhibitors (Statins) are used to treat dyslipidemia. Generally, the statins are the substrates of CYP enzymes, P-glycoprotein (P-gp), and organic anion transporting polypeptides transporters (OATP1B1). Objective: This review article focuses on the clinical significance of statins, and their interactions in real practice. Method: The databases like Medline/PubMed Central/PubMed, Google Scholar, Science Direct, Cochrane Library, Directory of open access journals (DOAJ), and reference lists were searched to identify relevant articles. Results: Most of the drug interactions of statins result in elevated plasma concentrations and toxicity of statins due to the inhibition of CYP3A4, P-gp and/or OATP1B1 transporters. The toxicity of statins includes myopathy, rhabdomyolysis, elevated liver enzymes, acute kidney injury, and diabetes. The statins like Simvastatin, Lovastatin, and Atorvastatin are substrates of CYP3A4 enzyme and P-glycoprotein and their concomitant use with the drugs inhibiting or inducing them would result in changes in plasma concentrations and toxicity/efficacy. However, the statins like Pravastatin, Rosuvastatin and Pitavastatin are not substrates of CYP enzymes and hence the concomitant use of CYP inhibitors or inducers do not affect them. Almost all the statins are the substrates of OATP1B1 transporter, and the co-prescription of inhibitors of OATP1B1 elevates the plasma concentrations and muscle toxicity of statins. Conclusion: Understanding the interacting potential of each statin will enable the prescribers, pharmacists, and other health care professionals to use statins effectively without compromising patient safety.


Author(s):  
Mymoona Akhter

Use of complementary and alternative medicines (CAM) for preventive and therapeutic purposes has increased tremendously in the last two decades internationally. The manufacturers of these products are not required to submit proof of safety or efficacy to the Food and Drug Administration. As a result, the adverse effects and drug interactions associated with them are largely unknown. In this chapter, the author presents interactions of herbal medicines with other medicines (herbal or non-herbal). A large number of herbal drugs, including from single drug to a variety of mixtures have been used to treat kidney disorders. Herb-herb or herb drug interaction has been reported intensively during last decade, therefore it becomes important to keep an eye on the use of combination herbal therapy in order to avoid serious results because of interactions with each other. Due to the growing awareness about the interactions and side effects of herbal drugs/supplements over the past few years, regulatory bodies are working on these issues and pharmacopoeias are being developed for reference.


2020 ◽  
Vol 11 (6) ◽  
pp. 5017-5023 ◽  
Author(s):  
Tomohiro Nabekura ◽  
Tatsuya Kawasaki ◽  
Yu Kato ◽  
Kazuyoshi Kawai ◽  
Serena Fiorito ◽  
...  

Citrus phytochemical auraptene activates the drug efflux transporter P-glycoprotein gene (MDR1) promoter in human intestinal LS174T cells. Auraptene increases protein expression of P-glycoprotein. Auraptene can cause food–drug interactions.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4589 ◽  
Author(s):  
Sunjoo Kim ◽  
Dong Kyun Kim ◽  
Yongho Shin ◽  
Ji-Hyeon Jeon ◽  
Im-Sook Song ◽  
...  

AB-FUBINACA, a synthetic indazole carboxamide cannabinoid, has been used worldwide as a new psychoactive substance. Because drug abusers take various drugs concomitantly, it is necessary to explore potential AB-FUBINACA-induced drug–drug interactions caused by modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of AB-FUBINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) of human liver microsomes, and on eight clinically important transport activities including organic cation transporters (OCT)1 and OCT2, organic anion transporters (OAT)1 and OAT3, organic anion transporting polypeptide transporters (OATP)1B1 and OATP1B3, P-glycoprotein, and breast cancer resistance protein (BCRP) in transporter-overexpressing cells were investigated. AB-FUBINACA inhibited CYP2B6-mediated bupropion hydroxylation via mixed inhibition with Ki value of 15.0 µM and competitively inhibited CYP2C8-catalyzed amodiaquine N-de-ethylation, CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation, and CYP2D6-catalyzed bufuralol 1′-hydroxylation with Ki values of 19.9, 13.1, 6.3, and 20.8 µM, respectively. AB-FUBINACA inhibited OCT2-mediated MPP+ uptake via mixed inhibition (Ki, 54.2 µM) and competitively inhibited OATP1B1-mediated estrone-3-sulfate uptake (Ki, 94.4 µM). However, AB-FUBINACA did not significantly inhibit CYP1A2, CYP2A6, CYP3A4, UGT1A1, UGT1A3, UGT1A4, UGT1A6, or UGT2B7 enzyme activities at concentrations up to 100 µM. AB-FUBINACA did not significantly inhibit the transport activities of OCT1, OAT1/3, OATP1B3, P-glycoprotein, or BCRP at concentrations up to 250 μM. As the pharmacokinetics of AB-FUBINACA in humans and animals remain unknown, it is necessary to clinically evaluate potential in vivo pharmacokinetic drug–drug interactions induced by AB-FUBINACA-mediated inhibition of CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, OCT2, and OATP1B1 activities.


Sign in / Sign up

Export Citation Format

Share Document