scholarly journals Uptake of Metals from Single and Multi-Component Systems by Spirulina Platensis Biomass

2016 ◽  
Vol 23 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Inga Zinicovscaia ◽  
Alexey Safonov ◽  
Varvara Tregubova ◽  
Victor Ilin ◽  
Liliana Cepoi ◽  
...  

Abstract Spirulina platensis biomass is widely applied for different technological purposes. The process of lanthanum, chromium, uranium and vanadium accumulation and biosorption by Spirulina platensis biomass from single- and multi-component systems was studied. The influence of multi-component system on the spirulina biomass growth was less pronounced in comparison with the single-component ones. To trace the uptake of metals by spirulina biomass the neutron activation analysis was used. In the experiment on the accumulation the efficiency of studied metal uptake changes in the following order: La(V) > Cr(III) > U(VI) > V(V) (single-metal solutions) and Cr(III) > La(V) > V(V) > U(VI) (multi-metal system). The process of metals biosorption was studied during a two-hour experiment. The highest rate of metal adsorption for single-component systems was observed for lanthanum and chromium. While for the multi-component system the significant increase of vanadium and chromium content in biomass was observed. In biosorption experiments the rate of biosorption and the Kd value were calculated for each metal. Fourier transform infrared spectroscopy was used to identify functional groups responsible for metal binding. The results of the present work show that spirulina biomass can be implemented as a low-cost sorbent for metal removal from industrial wastewater.

Author(s):  
K. J. Naveen Kumar ◽  
J. Prakash

Developing countries are increasingly concerned with pollution due to toxic heavy metals in the environment. Unlike most organic pollutants which can be destroyed, toxic metal ions released into the environment often persist indefinitely circulating and eventually accumulating throughout the food chain thus posing a serious threat to mankind. The use of biological materials for heavy metal removal or recovery has gained importance in recent years due to their good performance and low cost. Among the various sources, both live and inactivated biomass of organisms exhibits interesting metal binding capacities. Their complex cell walls contain high content of functional groups like amino, amide, hydroxyl, carboxyl, and phosphate which have been implicated in metals binding. In the present study, Aspergillus niger was used to analyze the metal uptake from an aqueous solution. The determination of Cu+2, Pb+2, Cd+2, Zn+2, Co-2 and Ni+2 in samples was carried out by differential Pulse Anodic Voltammetry (DPASV) and the Voltammograms. Production of oxalic acid was carried out by submerged fermentation. The organism used in the present study has the ideal properties to sequester toxic metals and grow faster.


1993 ◽  
Vol 328 ◽  
Author(s):  
J. S. Zambounis ◽  
J. Mizuguchi ◽  
H. Hediger ◽  
J. Pfeiffer ◽  
B. Schmidhalter ◽  
...  

ABSTRACT2,5-dimethylthio-TCNQ has been newly synthesized, and its optical and electrical properties have been investigated in evaporated films. A high electrical conductivity of σ=2× 10−5 Scm−l has been measured at room temperature. The present single-component system is found to contain 2×1017 spins/cm3. The charge carriers are presumably due to incorporated impurities which give the ESR signals. Carrier hopping is considerably facilitated by close intermolecular S-N contacts between the S atom of the -SCH3 group of one molecule and the N atom of -C≡N group of the neighboring Molecule.


2019 ◽  
Vol 9 (4) ◽  
Author(s):  
Akhilesh Bind ◽  
Anamika Kushwaha ◽  
Gitika Devi ◽  
Shivani Goswami ◽  
Bahnika Sen ◽  
...  

Author(s):  
Roy Assaf ◽  
Phuc Do ◽  
Samia Nefti-Meziani ◽  
Philip Scarf

The degradation process of complex multi-component systems is highly stochastic in nature. A major side effect of this complexity is that components of such systems may have unexpected reduced life and faults and failures that decrease the reliability of multi-component systems in industrial environments. In this work, we provide maintenance practitioners with an explanation of the nature of some of these unpredictable events, namely, the degradation interactions that take place between components. We begin by presenting a general wear model where the degradation process of a component may be dependent on the operating conditions, the component’s own state and the state of the other components. We then present our methodology for extracting accurate health indicators from multi-component systems by means of a time–frequency domain analysis. Finally, we present a multi-component system degradation analysis of experimental data generated by a gearbox-accelerated life testing platform. In doing so, we demonstrate the importance of modelling the interactions between the system components by showing their effect on component lifetime reduction.


2013 ◽  
Vol 69 (9) ◽  
pp. 1775-1787 ◽  
Author(s):  
Vahid Javanbakht ◽  
Seyed Amir Alavi ◽  
Hamid Zilouei

Release and distribution of heavy metals through industrial wastewaters has adverse affects on the environment via contamination of surface- and ground-water resources. Biosorption of heavy metals from aqueous solutions has been proved to be very promising, offering significant advantages such as low cost, availability, profitability, ease of operation, and high efficiency, especially when dealing with low concentrations. Residual biomasses of industrial microorganisms including bacteria, algae, fungi, and yeast have been found to be capable of efficiently accumulating heavy metals as biosorbent. This paper presents and investigates major mechanisms of biosorption and most of the functional groups involved. The biosorption process includes the following mechanisms: transport across cell membrane, complexation, ion exchange, precipitation, and physical adsorption. In order to understand how metals bind to the biomass, it is essential to identify the functional groups responsible for metal binding. Most of these groups have been characterized on the cell walls. The biosorbent contains a variety of functional sites including carboxyl, imidazole, sulfydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties that are responsible for metal adsorption. These could be helpful to improve biosorbents through modification of surface reactive sites via surface grafting and/or exchange of functional groups.


Author(s):  
Bingbing Qiu ◽  
Xuedong Tao ◽  
Hao Wang ◽  
Wenke Li ◽  
Xiang Ding ◽  
...  

1989 ◽  
Vol 44 (4) ◽  
pp. 257-261 ◽  
Author(s):  
Sławomir Błonski ◽  
Czesław Bojarski

Abstract Monte Carlo simulations of quantum yield and anisotropy of fluorescence in two-component systems have been conducted with various donor and acceptor concentrations and Förster radii ratios RDAO/RDDO. The influence of excitation migration and trapping on the fluorescence of the viscous solution has been considered. The results of the simulations have shown that steady-state fluorescence of a two-component system depends on the RDAO/RDDO ratio as predicted in LAF theory.


Sign in / Sign up

Export Citation Format

Share Document