scholarly journals Retention Efficiency of Vegetative Filter Strips for Nitrogen in Danjiangkou Reservoir Area, Central China

2019 ◽  
Vol 26 (2) ◽  
pp. 279-297
Author(s):  
Junshan Lei ◽  
Jiazhou Chen ◽  
Wei Yin

Abstract To investigate the retention efficiency and mechanism of nitrogen of Vegetative filter strips (VFSs) in the Danjiangkou Reservoir area, simulated runoff discharging experiments were carried out in a new-established Bermuda VFS. The results showed that the Bermuda VFS reduced 73.1-86.1 % of surface runoff through infiltration. The outflow rate of runoff increased first and then became stable with time. The concentration reduction rates (CRRs) and load reduction rates (LRRs) of NH3-N increased initially and then decreased with the increase of inflow concentration. The average CRRs and LRRs of NH3-N in three treatments ranged 66.1-90.3 % and 90.0-96.7 %, respectively. The concentration reduction of NH3-N was primarily achieved by soil adsorption. The optimal inflow concentration of NH3-N for the optimum CRR was between 0.65 and 3.52 mg/dm3. The CRRs and LRRs of NO3-N fluctuated between 6.8-14.0 % and 72.0-77.9 % in three treatments. The concentration reduction of NO3-N was primarily achieved by plant uptake and soil microbe assimilation. The optimal inflow concentration of NO3-N for optimum CRR exceeded 6.78 mg/dm3. The CRRs and LRRs of TN increased with the increase of inflow concentrations. The average CRRs in the low, moderate and high treatments reached 9.7, 14.8 and 27.4 %, respectively, and the average LRRs reached 72.1, 74.3 and 81.2 %, respectively. The optimal inflow concentration of TN for optimum CRR exceeded 10.21 mg/dm3. The study showed that Bermuda grass can retain nitrogen in runoff efficiently and should be promoted around the Danjiangkou reservoir.

2011 ◽  
Vol 40 (3) ◽  
pp. 980-988 ◽  
Author(s):  
Garey A. Fox ◽  
Emily M. Matlock ◽  
Jorge A. Guzman ◽  
Debabrata Sahoo ◽  
Kevin B. Stunkel

Chemosphere ◽  
2012 ◽  
Vol 88 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Stefan Otto ◽  
Alessandra Cardinali ◽  
Ester Marotta ◽  
Cristina Paradisi ◽  
Giuseppe Zanin

Author(s):  
Bahram Gharabaghi ◽  
◽  
Ramesh Rudra ◽  
Hugh R. Whiteley ◽  
W.T. Dickinson ◽  
...  

Water Policy ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 811-825
Author(s):  
Lei Wu ◽  
Xiaodan Tang ◽  
Xiaoyi Ma

Abstract Nonpoint source (NPS) pollution has been studied for many years but it exhibits random, widespread, complex uncertainties which make it difficult to manage and control. We employ group decision-making utilizing the fuzzy comprehensive evaluation method (FCE) and the analytic hierarchy process method (AHP) and comparatively evaluate the optimal allocation of NPS pollution control measures. Here, we present the top-three evaluation results ranked as follows: combination of contour tillage and vegetative filter strips (CT & VFS), vegetative filter strips (VFS), and combination of contour tillage and fertilizer reduction and vegetative filter strips (CT & FR & VFS). The fourth, fifth and sixth results by FCE method are chemical fertilizer reduction (FR), returning farmland to forest or pasture (RF), and combination of contour tillage and fertilizer reduction (CT & FR), while the corresponding results by AHP method are returning farmland to forest or pasture (RF), combination of contour tillage and fertilizer reduction (CT & FR), and fertilizer reduction (FR). The seventh results for each of the two methods are contour tillage (CT), which has a positive but limited effect on nutrient loss reduction. Our results provide new underlying insights needed to guide the resonable allocation of NPS pollution control measures.


Sign in / Sign up

Export Citation Format

Share Document