Preparation and characterization of nanoparticles composed of methylated N-(4-N,N-dimethyl aminobenzyl) chitosan for oral delivery of cyclosporine A

2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Reza Mahjub ◽  
Robabeh Allahyar ◽  
Morteza Rafiee-Tehrani ◽  
Farid Abedin Dorkoosh

AbstractCyclosporine is considered a highly lypophilic compound meaning low bioavailability through oral administration. In this study, cyclosporine was entrapped in a novel aromatic, quaternized derivative of chitosan (i.e. methylated N-(4-N,N-dimethyl aminobenzyl) chitosan) in order to improve solubility and bioavailability. Methylated N-(4,N,N-dimethyl aminobenzyl) chitosan was synthesized by the Schiff base reaction method. Polymeric nanoparticles containing cyclosporine was prepared and the physico-chemical properties of prepared nanoparticles were determined. The nanoparticles were studied morphologically using transmission electron microscopy (TEM). Finally, the release of cyclosporine from nanoparticles was studied in vitro using simulated intestinal fluid adjusted to pH of 6.8. For the preparation of nanoparticles, different formulations were studied and it was found that proper nanoparticles were prepared in equal concentration (1 mg/mL) of polymer and sodium tri-poly phosphate (TPP). The size, zeta potential, PdI, EE% and LE% of the prepared nanoparticles were reported as 173±36 nm, 23.1±4.18 mV, 0.243±0.05, 97.1±4.38% and 3.2±0.21%, respectively. The TEM images of nanoparticles revealed spherical to sub-spherical nanoparticles with no sign of agglomeration. This study suggests that preparations of nanoparticles composed of methylated N-(4,N,N-dimethyl aminobenzyl) chitosan can be a good candidate for improving the oral bioavailability of cyclosporine.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 263 ◽  
Author(s):  
Maria Letizia Manca ◽  
Iris Usach ◽  
José Esteban Peris ◽  
Antonella Ibba ◽  
Germano Orrù ◽  
...  

New three-dimensionally-structured hybrid phospholipid vesicles, able to load clotrimazole in a high amount (10 mg/mL), were obtained for the first time in this work by significantly reducing the amount of water (≤10%), which was replaced with a mixture of glycerol and ethanol (≈90%). A pre-formulation study was carried out to evaluate the effect of both the composition of the hydrating medium and the concentration of the phospholipid on the physico-chemical properties of hybrid vesicles. Four different three-dimensionally-structured hybrid vesicles were selected as ideal systems for the topical application of clotrimazole. An extensive physico-chemical characterization performed using transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), 31P-NMR, and small-angle X-ray scattering (SAXS) displayed the formation of small, multi-, and unilamellar vesicles very close to each other, and was capable of forming a three-dimensional network, which stabilized the dispersion. Additionally, the dilution of the dispersion with water reduced the interactions between vesicles, leading to the formation of single unilamellar vesicles. The evaluation of the in vitro percutaneous delivery of clotrimazole showed an improved drug deposition in the skin strata provided by the three-dimensionally-structured vesicles with respect to the commercial cream (Canesten®) used as a reference. Hybrid vesicles were highly biocompatible and showed a significant antifungal activity in vitro, greater than the commercial cream Canesten®. The antimycotic efficacy of formulations was confirmed by the reduced proliferation of the yeast cells at the site of infection in vivo. In light of these results, clotrimazole-loaded, three-dimensionally-structured hybrid vesicles appear to be one of the most innovative and promising formulations for the treatment of candidiasis infections.


2019 ◽  
Vol 39 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Suruchi Suri ◽  
Mohd. Aamir Mirza ◽  
Md. Khalid Anwer ◽  
Abdullah S. Alshetaili ◽  
Saad M. Alshahrani ◽  
...  

Abstract The aim of the current study was to develop a dual-loaded core shell nanoparticles encapsulating paclitaxel (PTX) and ellagic acid (EA) by membrane dialysis method. Based on particle size, polydispersity index (PDI), and entrapment efficiency, the dual drug-loaded nanoparticles (F2) was optimized. The optimized nanoparticles (F2) showed a particle size of 140±2 nm and a PDI of 0.23±3. The size and the morphology were confirmed by transmission electron microscopy (TEM) and found agreement with the results of dynamic light scattering. The entrapment efficiencies of total drug (PTX and EA), PTX, and EA in the nanoparticles (F2) were measured as 80%, 62.3%, and 37.7%, respectively. The in vitro release profile showed a controlled release pattern for 48 h. A higher cytotoxicity was observed with nanoparticles (F2) in comparison to free PTX. The results revealed that co-delivery of PTX and EA could be used for its oral delivery for the effective treatment of breast cancer.


2011 ◽  
Vol 236-238 ◽  
pp. 538-542
Author(s):  
Yong Jun Liu

The deactivation behavior of industrial hydrodemetallization catalysts was investigated in the presented work. The main objective of the study is to contribute to a better understanding of the nature of the coke and metal deposition on the used catalysts by applying chemical analysis and various advanced analytical techniques, such as X-ray diffraction analysis (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and solid-state carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The results are discussed scientifically based on the physico–chemical properties of origin and used catalysts.


Nano LIFE ◽  
2013 ◽  
Vol 03 (03) ◽  
pp. 1342003 ◽  
Author(s):  
GAURAV LALWANI ◽  
BALAJI SITHARAMAN

Recent advances in nanotechnology have enabled the synthesis and characterization of nanomaterials suitable for applications in the field of biology and medicine. Due to their unique physico-chemical properties, carbon-based nanomaterials such as fullerenes, metallofullerenes, carbon nanotubes and graphene have been widely investigated as multifunctional materials for applications in tissue engineering, molecular imaging, therapeutics, drug delivery and biosensing. In this review, we focus on the multifunctional capabilities of fullerenes and metallofullerenes for diagnosis and therapy. Specifically, we review recent advances toward the development of fullerene- and metallofullerene-based magnetic resonance imaging (MRI) and X-ray imaging contrast agents, drug and gene delivery vehicles, and photodynamic therapy agents. We also discuss in vitro and in vivo toxicity, and biocompatibility issues associated with the use of fullerenes and metallofullerenes for biomedical applications.


2018 ◽  
Vol 34 (4) ◽  
pp. 1765-1773 ◽  
Author(s):  
N. Moncif ◽  
E. L. H. Gourri ◽  
A. B. A. Elouahli ◽  
M. Ezzahmouly ◽  
K. Nayme ◽  
...  

In this work, we report the physico-chemical properties and antibacterial activity of apatite/chitosan composite cements. The biocomposite was prepared by reaction between dihydrated dicalcium phosphate and calcium hydroxide in the presence of chitosan. The characterization of cement was carried out by Infrared Spectroscopy, X-ray diffraction, Transmission Electron Microscopy and X-ray Scanner with computational image processing. The results show that the setting of the paste is due to the formation of a hydrated tri-calcium phosphate that evolves into a hard calcium-apatite. In the presence of chitosan, the fastness of setting time is attributed to the precipitation of chitosan that strengthens the cohesion between grains. The formed complex evolves into hard Apatite-chitosan composite. In an induced bone defect, the hard composite shows radiopaque homogenous microstructure and intimate contact bone/implant. The antibacterial tests of hard cements show a significant reduction in Staphylococci bacterial growth on the surface of composite grains. This reduction is highly dependent on the type of bacteria, and the percentage of the added antibacterial agent. Bio-composite cement shows total inhibition of Staphylococci aureus and low resistance to Staphylococci epidermidis. The apatite/chitosan composite prepared by the way of cements can have interesting applications as bone substitute material.


RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 79616-79623 ◽  
Author(s):  
Sakthivel Ramasamy ◽  
Devasier Bennet ◽  
Sanghyo Kim

Facile synthesis of hollow mesoporous structured Ru-NPs by dual template method, structural characterization and in vitro biophysical and uptake evaluation for biomedical application.


Sign in / Sign up

Export Citation Format

Share Document